• editor.aipublications@gmail.com
  • Track Your Paper
  • Contact Us
  • ISSN: 2456-8678

International Journal Of Rural Development, Environment And Health Research(IJREH)

Supercritical water oxidation for the treatment of various organic wastes: A review

Falah Kareem Hadi Al-kaabi


International Journal of Rural Development, Environment and Health Research(IJREH), Vol-6,Issue-4, July - August 2022, Pages 1-14, 10.22161/ijreh.6.4.1

Download | Downloads : 13 | Total View : 662

Article Info: Received: 25 Jul 2022; Received in revised form: 15 Aug 2022; Accepted: 22 Aug 2022; Available online: 28 Aug 2022

Share

The removal of complex organic and chemical industrial wastes is not accessible using conventional treatment methods. Incineration and hydrothermal oxidation under supercritical conditions are two options for dealing with a wide range of hazardous wastes. Incineration is an effective treatment for removing hazardous waste. The main disadvantages of incineration are a source of unwanted emissions and high operating costs. Supercritical water oxidation (SCWO) is considered a green technology for destroying organic waste with friendly environmental emissions. The removal efficiency reached 99.99% within a short residence time. In this review, the treatment of organic waste by SCWO is shown using co-fuel and catalysts to enhance the performance of SCWO.

Co-fuel, hazardous wastes, industrial scales, supercritical water oxidation, treatment.

[1] Z. Fang, C. (Charles) Xu, Near-critical and Supercritical Water and Their Applications for Biorefineries, Springer Netherlands, Dordrecht, 2014. doi:10.1007/978-94-017-8923-3.
[2] S. Wang, Y. Guo, C. Chen, J. Zhang, Y. Gong, Y. Wang, Supercritical water oxidation of landfill leachate, Waste Manag. 31 (2011) 2027–2035. doi:10.1016/j.wasman.2011.05.006.
[3] D. Zou, Y. Chi, C. Fu, J. Dong, F. Wang, M. Ni, Co-destruction of organic pollutants in municipal solid waste leachate and dioxins in fly ash under supercritical water using H2O2 as oxidant, J. Hazard. Mater. 248–249 (2013) 177–184. doi:10.1016/j.jhazmat.2013.01.005.
[4] C. Gadipelly, A. Pérez-González, G.D. Yadav, I. Ortiz, R. Ibáñez, V.K. Rathod, K. V. Marathe, Pharmaceutical Industry Wastewater: Review of the Technologies for Water Treatment and Reuse, Ind. Eng. Chem. Res. 53 (2014) 11571–11592. doi:10.1021/ie501210j.
[5] K. Kim, S.H. Son, K.S. Kim, K. Kim, Y.C. Kim, Environmental effects of supercritical water oxidation (SCWO) process for treating transformer oil contaminated with polychlorinated biphenyls (PCBs), Chem. Eng. J. 165 (2010) 170–174. doi:10.1016/j.cej.2010.09.012.
[6] Z. Fodor, J.J. Klemeš, Waste as alternative fuel - Minimising emissions and effluents by advanced design, Process Saf. Environ. Prot. 90 (2012) 263–284. doi:10.1016/j.psep.2011.09.004.
[7] V. Vadillo, M.B. García-Jarana, J. Sánchez-Oneto, J.R. Portela, E.J. Martínez De La Ossa, Simulation of real wastewater supercritical water oxidation at high concentration on a pilot plant scale, Ind. Eng. Chem. Res. 50 (2011) 12512–12520. doi:10.1021/ie201625y.
[8] Recommendations for the Disposal of Chemical Agents and Munitions, National Academies Press, Washington, D.C., 1994. doi:10.17226/2348.
[9] M. Kutz, ed., Handbook of Environmental Engineering, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2018. doi:10.1002/9781119304418.
[10] L. Li, P. Chen, E.F. Gloyna, Generalized kinetic model for wet oxidation of organic compounds, AIChE J. 37 (1991) 1687–1697.
[11] S.T. Kolaczkowski, P. Plucinski, F.J. Beltran, F.J. Rivas, D.B. McLurgh, Wet air oxidation: A review of process technologies and aspects in reactor design, Chem. Eng. J. 73 (1999) 143–160. doi:10.1016/S1385-8947(99)00022-4.
[12] H.E. Barner, C.Y. Huang, T. Johnson, G. Jacobs, M.A. Martch, W.R. Killilea, Supercritical water oxidation: An emerging technology, J. Hazard. Mater. 31 (1992) 1–17. doi:10.1016/0304-3894(92)87035-E.
[13] H. Li, Y. Oshima, Elementary reaction mechanism of methylamine oxidation in supercritical water, Ind. Eng. Chem. Res. 44 (2005) 8756–8764. doi:10.1021/ie0580506.
[14] M. Koo, W.K. Lee, C.H. Lee, New reactor system for supercritical water oxidation and its application on phenol destruction, Chem. Eng. Sci. 52 (1997) 1201–1214. doi:10.1016/S0009-2509(96)00477-0.
[15] P.T. Williams, J.A. Onwudili, Destruction of environmental organic pollutants by supercritical water oxidation, Environ. Technol. 27 (2006) 823–834. doi:10.1080/09593332708618704.
[16] Y. Li, S. Wang, Supercritical water oxidation for environmentally friendly treatment of organic wastes, in: Adv. Supercrit. Fluids Technol., IntechOpen, 2019: pp. 1–28.
[17] J. Abelleira, J. Sánchez-Oneto, J.R. Portela, E.J. Martínez De La Ossa, Kinetics of supercritical water oxidation of isopropanol as an auxiliary fuel and co-fuel, Fuel. 111 (2013) 574–583. doi:10.1016/j.fuel.2013.03.033.
[18] X. Dong, Y. Wang, X. Li, Y. Yu, M. Zhang, Process Simulation of Laboratory Wastewater Treatment via Supercritical Water Oxidation, Ind. Eng. Chem. Res. 53 (2014) 7723–7729. doi:10.1021/ie4044339.
[19] A. Miller, R. Espanani, A. Junker, D. Hendry, N. Wilkinson, D. Bollinger, J.M. Abelleira-Pereira, M.A. Deshusses, E. Inniss, W. Jacoby, Supercritical water oxidation of a model fecal sludge without the use of a co-fuel, Chemosphere. 141 (2015) 189–196. doi:10.1016/j.chemosphere.2015.06.076.
[20] M. Wenbing, L. Hongpeng, M. Xuemei, Study on supercritical water oxidation of oily wastewater with ethanol, Res. J. Appl. Sci. Eng. Technol. 6 (2013) 1007–1011. doi:10.19026/rjaset.6.4005.
[21] Y. Oshima, K. Tomita, S. Koda, Kinetics of the catalytic oxidation of phenol over manganese oxide in supercritical water, Ind. Eng. Chem. Res. 38 (1999) 4183–4188. doi:10.1021/ie9902939.
[22] M.D. Bermejo, M.J. Cocero, Supercritical water oxidation: A technical review, AIChE J. 52 (2006) 3933–3951. doi:10.1002/aic.10993.
[23] P.A. Marrone, M. Hodes, K.A. Smith, J.W. Tester, Salt precipitation and scale control in supercritical water oxidation - Part B: Commercial/full-scale applications, J. Supercrit. Fluids. 29 (2004) 289–312. doi:10.1016/S0896-8446(03)00092-5.
[24] K.M. Benjamin, P.E. Savage, Supercritical water oxidation of methylamine, Ind. Eng. Chem. Res. 44 (2005) 5318–5324. doi:10.1021/ie0491793.
[25] A.E. Rozen, A. V. Roshchin, A.E. Zverovshchikov, V.A. Grachyov, V.S. Grigor’Ev, E. V. Vorob’Ev, K.M. Kolmakov, I.D. Epinat’Ev, E.G. Raevskaya, Calculation of critical and engineering parameters for a supercritical water oxidation reaction system as exemplified by water–aromatic hydrocarbon binary mixtures, Russ. J. Phys. Chem. B. 9 (2015) 481–489. doi:10.1134/S1990793115030185.
[26] S.N.K.K. Aki, M.A. Abraham, Catalytic partial oxidation of methane in supercritical water, J. Supercrit. Fluids. 7 (1994) 259–263. doi:10.1016/0896-8446(94)90013-2.
[27] P.E. Savage, A perspective on catalysis in sub- and supercritical water, J. Supercrit. Fluids. 47 (2009) 407–414. doi:10.1016/j.supflu.2008.09.007.
[28] M.D. Bermejo, M.J. Cocero, F. Fernández-Polanco, A process for generating power from the oxidation of coal in supercritical water, Fuel. 83 (2004) 195–204. doi:10.1016/S0016-2361(03)00256-4.
[29] P. Kritzer, E. Dinjus, An assessment of supercritical water oxidation (SCWO): Existing problems, possible solutions and new reactor concepts, Chem. Eng. J. 83 (2001) 207–214. doi:10.1016/S1385-8947(00)00255-2.
[30] G. Brunner, Near and supercritical water. Part II: Oxidative processes, J. Supercrit. Fluids. 47 (2009) 382–390. doi:10.1016/j.supflu.2008.09.001.
[31] M.J. Cocero, 9.4 Supercritical water oxidation (SCWO). Application to industrial wastewater treatment, Ind. Chem. Libr. 9 (2001) 509–526. doi:10.1016/S0926-9614(01)80030-7.
[32] I.M. Svishchev, A. Plugatyr, Supercritical water oxidation of o-dichlorobenzene: degradation studies and simulation insights, J. Supercrit. Fluids. 37 (2006) 94–101. doi:10.1016/j.supflu.2005.08.005.
[33] G. Anitescu, L.L. Tavlarides, Oxidation of biphenyl in supercritical water: Reaction kinetics, key pathways, and main products, Ind. Eng. Chem. Res. 44 (2005) 1226–1232. doi:10.1021/ie049566c.
[34] K. Hatakeda, Y. Ikushima, O. Sato, T. Aizawa, N. Saito, Supercritical water oxidation of polychlorinated biphenyls using hydrogen peroxide, Chem. Eng. Sci. 54 (1999) 3079–3084. doi:10.1016/S0009-2509(98)00392-3.
[35] G. Anitescu, L.L. Tavlarides, Supercritical Water Oxidation Reaction Pathway and Kinetics, Environ. Res. 40 (2001).
[36] F.K.H. Al-Kaabi, B. Al-Duri, I. Kings, Supercritical water oxidation of 3-methylpyridine with propylene glycol, Asian J. Chem. 33 (2021) 1573–1578. doi:10.14233/ajchem.2021.23208.
[37] N. Crain, S. Tebbal, L. Li, E.F. Gloyna, Kinetics and Reaction Pathways of Pyridine Oxidation in Supercritical Water, Ind. Eng. Chem. Res. 32 (1993) 2259–2268. doi:10.1021/ie00022a010.
[38] J. Yu, P.E. Savage, Phenol oxidation over CuO/Al2O3 in supercritical water, Appl. Catal. B Environ. 28 (2000) 275–288. doi:10.1016/S0926-3373(00)00184-3.
[39] J.L. Dinaro, J.W. Tester, J.B. Howard, K.C. Swallow, Experimental measurements of benzene oxidation in supercritical water, AIChE J. 46 (2000) 2274–2284. doi:10.1002/aic.690461118.
[40] J.D. Taylor, J.I. Steinfeld, J.W. Tester, Experimental measurement of the rate of methyl tert-butyl ether hydrolysis in sub- and supercritical water, Ind. Eng. Chem. Res. 40 (2001) 67–74. doi:10.1021/ie0006357.
[41] R. Lachance, J. Paschkewitz, J. DiNaro, J.W. Tester, Thiodiglycol hydrolysis and oxidation in sub- and supercritical water, J. Supercrit. Fluids. 16 (1999) 133–147. doi:10.1016/S0896-8446(99)00025-X.
[42] C.J. Martino, P.E. Savage, J. Kasiborski, Kinetics and Products from o-Cresol Oxidation in Supercritical Water, Ind. Eng. Chem. Res. 34 (1995) 1941–1951. doi:10.1021/ie00045a003.
[43] S. RICE, R. STEEPER, Oxidation rates of common organic compounds in supercritical water, J. Hazard. Mater. 59 (1998) 261–278. doi:10.1016/S0304-3894(97)00152-0.
[44] J. Schanzenbächer, J.D. Taylor, J.W. Tester, Ethanol oxidation and hydrolysis rates in supercritical water, J. Supercrit. Fluids. 22 (2002) 139–147. doi:10.1016/S0896-8446(01)00119-X.
[45] M. Okazaki, T. Funazukuri, Decomposition of urea in sub- and supercritical water with/without additives, in: J. Mater. Sci., 2008: pp. 2316–2322. doi:10.1007/s10853-007-2027-6.
[46] P. Cabeza, B. Al-Duri, M.D. Bermejo, M.J. Cocero, Co-oxidation of ammonia and isopropanol in supercritical water in a tubular reactor, Chem. Eng. Res. Des. 92 (2014) 2568–2574. doi:10.1016/j.cherd.2014.01.017.
[47] D. Xu, S. Wang, J. Zhang, X. Tang, Y. Guo, C. Huang, Supercritical water oxidation of a pesticide wastewater, Chem. Eng. Res. Des. 94 (2015) 396–406. doi:10.1016/j.cherd.2014.08.016.
[48] N. Segond, Y. Matsumura, K. Yamamoto, Determination of ammonia oxidation rate in sub- and supercritical water, Ind. Eng. Chem. Res. 41 (2002) 6020–6027. doi:10.1021/ie0106682.
[49] X.H. Qi, Y.Y. Zhuang, Y.C. Yuan, W.X. Gu, Decomposition of aniline in supercritical water, J. Hazard. Mater. 90 (2002) 51–62. doi:10.1016/S0304-3894(01)00330-2.
[50] J. Chen, C. Lin, S. Rong, Chen 2000.pdf, China-Japan Int. Acad. Symp. (2000) 1–130.
[51] Y. Gong, Y. Guo, S. Wang, W. Song, Supercritical water oxidation of Quinazoline: Effects of conversion parameters and reaction mechanism, Water Res. 100 (2016) 116–125. doi:10.1016/j.watres.2016.05.001.
[52] D.S. Lee, K.S. Park, Y.W. Nam, Y.C. Kim, C.H. Lee, Hydrothermal decomposition and oxidation of p-nitroaniline in supercritical water, J. Hazard. Mater. 56 (1997) 247–256. doi:10.1016/S0304-3894(97)00047-2.
[53] C. Aymonier, P. Beslin, C. Jolivalt, F. Cansell, Hydrothermal oxidation of a nitrogen-containing compound: the fenuron, J. Supercrit. Fluids. 17 (2000) 45–54. doi:10.1016/S0896-8446(99)00040-6.
[54] M.B. García-Jarana, V. Vadillo, J.R. Portela, J. Sánchez-Oneto, E.J.M. de la Ossa, B. Al-Duri, Oxidant Multi-Injection in Supercritical Water Oxidation of Wastewaters, Procedia Eng. 42 (2012) 1326–1334. doi:10.1016/j.proeng.2012.07.524.
[55] B. Al-Duri, F. Alsoqyiani, I. Kings, Supercritical water oxidation (SCWO) for the removal of N-containing heterocyclic hydrocarbon wastes. Part I: Process enhancement by addition of isopropyl alcohol, J. Supercrit. Fluids. 116 (2016) 155–163. doi:10.1016/j.supflu.2016.05.002.
[56] Y.H. Shin, N.C. Shin, B. Veriansyah, J. Kim, Y.W. Lee, Supercritical water oxidation of wastewater from acrylonitrile manufacturing plant, J. Hazard. Mater. 163 (2009) 1142–1147. doi:10.1016/j.jhazmat.2008.07.069.
[57] M. Goto, T. Nada, A. Kodama, T. Hirose, Kinetic analysis for destruction of municipal sewage sludge and alcohol distillery wastewater by supercritical water oxidation, Ind. Eng. Chem. Res. 38 (1999) 1863–1865. doi:10.1021/ie980479s.
[58] P.E. Savage, J. Yu, N. Stylski, E.E. Brock, Kinetics and mechanism of methane oxidation in supercritical water, J. Supercrit. Fluids. 12 (1998) 141–153. doi:10.1016/S0896-8446(97)00046-6.
[59] D.-S. Lee, E.F. Gloyna, L. Li, Efficiency of H2O2 and O2 in supercritical water oxidation of 2,4-dichlorophenol and acetic acid, J. Supercrit. Fluids. 3 (1990) 249–255. doi:10.1016/0896-8446(90)90030-P.
[60] C. Aymonier, A. Gratias, J. Mercadier, F. Cansell, Global reaction heat of acetic acid oxidation in supercritical water, J. Supercrit. Fluids. 21 (2001) 219–226. doi:10.1016/S0896-8446(01)00094-8.
[61] T.D. Thornton, P.E. Savage, Phenol oxidation in supercritical water, J. Supercrit. Fluids. 3 (1990) 240–248. doi:10.1016/0896-8446(90)90029-L.
[62] V.F. Marulanda Cardona, P.A. Marulanda Buitrago, D.H. Alvarado Acosta, Landfill leachate treatment by batch supercritical water oxidation, Cienc. e Ing. Neogranadina. 27 (2017) 5–26. doi:10.18359/rcin.2305.
[63] Y. Gong, Y. Guo, J.D. Sheehan, Z. Chen, S. Wang, Oxidative degradation of landfill leachate by catalysis of CeMnOx/TiO2 in supercritical water: Mechanism and kinetic study, Chem. Eng. J. 331 (2018) 578–586. doi:10.1016/j.cej.2017.08.122.
[64] J. Sánchez-Oneto, J.R. Portela, E. Nebot, E. Martínez de la Ossa, Hydrothermal oxidation: Application to the treatment of different cutting fluid wastes, J. Hazard. Mater. 144 (2007) 639–644. doi:10.1016/j.jhazmat.2007.01.088.
[65] B. Cui, F. Cui, G. Jing, S. Xu, W. Huo, S. Liu, Oxidation of oily sludge in supercritical water, J. Hazard. Mater. 165 (2009) 511–517. doi:10.1016/j.jhazmat.2008.10.008.
[66] J. Zhang, S. Wang, Y. Li, J. Lu, S. Chen, X. Luo, Supercritical water oxidation treatment of textile sludge, Environ. Technol. 38 (2017) 1949–1960. doi:10.1080/09593330.2016.1242655.
[67] O.Ö. Söǧüt, M. Akgün, Treatment of textile wastewater by SCWO in a tube reactor, J. Supercrit. Fluids. 43 (2007) 106–111. doi:10.1016/j.supflu.2007.04.007.
[68] International Atomic Energy Agency, Application of Ion Exchange Processes for the Treatment of Radioactive Waste and Management of Spent Ion Exchangers, Tech. Reports Ser. No.408. (2002) 115. http://www-pub.iaea.org/books/IAEABooks/6221/Application-of-Ion-Exchange-Processes-for-Treatment-of-Radioactive-Waste-and-Management-of-Spent-Ion-Exchangers.
[69] A. Leybros, A. Roubaud, P. Guichardon, O. Boutin, Supercritical water oxidation of ion exchange resins: Degradation mechanisms, Process Saf. Environ. Prot. 88 (2010) 213–222. doi:10.1016/j.psep.2009.11.001.
[70] P.A. Marrone, P.M. Gschwend, K.C. Swallow, W.A. Peters, J.W. Tester, Product distribution and reaction pathways for methylene chloride hydrolysis and oxidation under hydrothermal conditions, J. Supercrit. Fluids. 12 (1998) 239–254. doi:10.1016/S0896-8446(98)00083-7.
[71] J. Ma, X. Dong, Y. Yu, B. Zheng, M. Zhang, The effects of alkalis on the dechlorination of o-chlorophenol in supercritical water: Molecular dynamics simulation and experiment, Chem. Eng. J. 241 (2014) 268–272. doi:10.1016/j.cej.2013.12.020.
[72] R.K. Helling, J.W. Tester, Oxidation of simple compounds and mixtures in supercritical water: Carbon monoxide, ammonia, and ethanol, Environ. Sci. Technol. 22 (1988) 1319–1324. doi:10.1021/es00176a012.
[73] J.M. Ploeger, M.A. Mock, J.W. Tester, Cooxidation of ammonia and ethanol in supercritical water, part 1: Experimental results, AIChE J. 53 (2007) 941–947. doi:10.1002/aic.11127.
[74] B. Yang, Z. Cheng, T. Yuan, Z. Shen, Denitrification of ammonia and nitrate through supercritical water oxidation (SCWO): A study on the effect of NO3−/NH4+ ratios, catalysts and auxiliary fuels, J. Supercrit. Fluids. 138 (2018) 56–62. doi:10.1016/j.supflu.2018.03.021.
[75] T. Oe, H. Suzugaki, I. Naruse, A.T. Quitain, H. Daimon, K. Fujie, Role of methanol in supercritical water oxidation of ammonia, Ind. Eng. Chem. Res. 46 (2007) 3566–3573. doi:10.1021/ie070168u.
[76] M.D. Bermejo, F. Cantero, M.J. Cocero, Supercritical water oxidation of feeds with high ammonia concentrations. Pilot plant experimental results and modeling, Chem. Eng. J. 137 (2008) 542–549. doi:10.1016/j.cej.2007.05.010.
[77] L.D. Pinto, L.M.F. dos Santos, B. Al-Duri, R.C. Santos, Supercritical water oxidation of quinoline in a continuous plug flow reactor—part 1: effect of key operating parameters, J. Chem. Technol. Biotechnol. 81 (2006) 912–918. doi:10.1002/jctb.1420.
[78] B. Al-Duri, F. Alsoqyani, I. Kings, Supercritical water oxidation for the destruction of hazardous waste: Better than incineration, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 373 (2015). doi:10.1098/rsta.2015.0013.
[79] J.M. Ploeger, P.A. Bielenberg, R.P. Lachance, J.W. Tester, Co-oxidation of methylphosphonic acid and ethanol in supercritical water I : Experimental results, 39 (2006) 233–238. doi:10.1016/j.supflu.2006.03.002.
[80] M.J. Cocero, E. Alonso, R. Torío, D. Vallelado, F. Fdz-Polanco, Supercritical water oxidation in a pilot plant of nitrogenous compounds: 2-Propanol mixtures in the temperature range 500-750 °C, Ind. Eng. Chem. Res. 39 (2000) 3707–3716. doi:10.1021/ie990852b.
[81] J. Zhang, S. Wang, Y. Guo, D. Xu, X. Li, X. Tang, Co-Oxidation E ff ects of Methanol on Acetic Acid and Phenol in Supercritical Water, (2013).
[82] E. Shimoda, T. Fujii, R. Hayashi, Y. Oshima, Kinetic analysis of the mixture effect in supercritical water oxidation of ammonia/methanol, J. Supercrit. Fluids. 116 (2016) 232–238. doi:10.1016/j.supflu.2016.05.052.
[83] P. Cabeza, M.D. Bermejo, C. Jiménez, M.J. Cocero, Experimental study of the supercritical water oxidation of recalcitrant compounds under hydrothermal flames using tubular reactors, Water Res. 45 (2011) 2485–2495. doi:10.1016/j.watres.2011.01.029.
[84] P.A. Marrone, S.D. Cantwell, D.W. Dalton, SCWO system designs for waste treatment: Application to chemical weapons destruction, Ind. Eng. Chem. Res. 44 (2005) 9030–9039. doi:10.1021/ie0506670.
[85] P.E. Savage, J. Rovira, N. Stylski, C.J. Martino, Oxidation kinetics for methane/methanol mixtures in supercritical water, J. Supercrit. Fluids. 17 (2000) 155–170.
[86] P.A. Webley, J.W. Tester, H.R. Holgate, Oxidation Kinetics of Ammonia and Ammonia–Methanol Mixtures in Supercritical Water in the Temperature Range 530–700 °C at 246 bar, Ind. Eng. Chem. Res. 30 (1991) 1745–1754. doi:10.1021/ie00056a010.
[87] M. Golmohammadi, S.J. Ahmadi, J. Towfighi, Catalytic supercritical water destructive oxidation of tributyl phosphate: Study on the effect of operational parameters, J. Supercrit. Fluids. 140 (2018) 32–40. doi:10.1016/j.supflu.2018.05.022.
[88] M.J. Angeles-Hernández, G.A. Leeke, R.C.D. Santos, Catalytic supercritical water oxidation for the destruction of quinoline over MnO2/CuO mixed catalyst, Ind. Eng. Chem. Res. 48 (2009) 1208–1214. doi:10.1021/ie8006402.
[89] F. Civan, D.H. Özaltun, E. Kipҫak, M. Akgün, The treatment of landfill leachate over Ni/Al 2 O 3 by supercritical water oxidation, J. Supercrit. Fluids. 100 (2015) 7–14. doi:10.1016/j.supflu.2015.02.018.
[90] Z.Y. Ding, L. Li, D. Wade, E.F. Gloyna, KINETICS , CATALYSIS , AND REACTION ENGINEERING Supercritical Water Oxidation of NH3 over a MnO2/CeO2 Catalyst, Ind. Eng. Chem. Res. 5885 (1998) 1707–1716.
[91] J.R. Portela, E. Nebot, E. Martinez de la Ossa, Kinetic comparison between subcritical and supercritical water oxidation of phenol, Chem. Eng. J. 81 (2001) 287–299. doi:10.1016/S1385-8947(00)00226-6.
[92] S. Bianchetta, L. Li, E.F. Gloyna, Supercritical water oxidation of methylphosphonic acid, Ind. Eng. Chem. Res. 38 (1999) 2902–2910. doi:10.1021/ie990094p.
[93] J.P.S. Queiroz, M.D. Bermejo, F. Mato, M.J. Cocero, Supercritical water oxidation with hydrothermal flame as internal heat source: Efficient and clean energy production from waste, J. Supercrit. Fluids. 96 (2015) 103–113. doi:10.1016/j.supflu.2014.09.018.
[94] S. Baur, H. Schmidt, A. Krämer, J. Gerber, The destruction of industrial aqueous waste containing biocides in supercritical water - Development of the SUWOX process for the technical application, J. Supercrit. Fluids. 33 (2005) 149–157. doi:10.1016/j.supflu.2004.07.005.
[95] Á. Martín, M.D. Bermejo, M.J. Cocero, Recent developments of supercritical water oxidation: A patents review, Recent Patents Chem. Eng. 4 (2011) 219–230. doi:10.2174/1874478811104030219.
[96] H. Schmieder, J. Abeln, Supercritical water oxidation: State of the art, Chem. Eng. Technol. 22 (1999) 903–908. doi:10.1002/(SICI)1521-4125(199911)22:11<903::AID-CEAT903>3.0.CO;2-E.
[97] P.A. Marrone, Supercritical water oxidation - Current status of full-scale commercial activity for waste destruction, J. Supercrit. Fluids. 79 (2013) 283–288. doi:10.1016/j.supflu.2012.12.020.
[98] V. Vadillo, J. Sánchez-Oneto, J.R. Portela, E.J. Martínez de la Ossa, Supercritical Water Oxidation, Adv. Oxid. Process. Wastewater Treat. Emerg. Green Chem. Technol. (2018) 333–358. doi:10.1016/B978-0-12-810499-6.00010-3.
[99] M. Hodes, P.A. Marrone, G.T. Hong, K.A. Smith, J.W. Tester, Salt precipitation and scale control in supercritical water oxidation - Part A: Fundamentals and research, J. Supercrit. Fluids. 29 (2004) 265–288. doi:10.1016/S0896-8446(03)00093-7.
[100] V. Vadillo, J. Sánchez-Oneto, J.R. Portela, E.J. Martínez De La Ossa, Problems in supercritical water oxidation process and proposed solutions, Ind. Eng. Chem. Res. 52 (2013) 7617–7629. doi:10.1021/ie400156c.
[101] E. Adar, M. Ince, M.S. Bilgili, Evaluation of development in supercritical water oxidation technology, Desalin. Water Treat. 161 (2019) 243–253. doi:10.5004/dwt.2019.24297.
[102] M.D. Bermejo, D. Rincon, A. Martin, M.J. Cocero, Experimental performance and modeling of a new cooled-wall reactor for the supercritical water oxidation, Ind. Eng. Chem. Res. 48 (2009) 6262–6272. doi:10.1021/ie900054e.
[103] P. Kritzer, Corrosion in high-temperature and supercritical water and aqueous solutions: a review, J. Supercrit. Fluids. 29 (2004) 1–29. doi:10.1016/S0896-8446(03)00031-7.
[104] P.A. Marrone, G.T. Hong, Corrosion control methods in supercritical water oxidation and gasification processes, J. Supercrit. Fluids. 51 (2009) 83–103. doi:10.1016/j.supflu.2009.08.001.
[105] G. Brunner, Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes, J. Supercrit. Fluids. 47 (2009) 373–381. doi:10.1016/j.supflu.2008.09.002.