• editor.aipublications@gmail.com
  • Track Your Paper
  • Contact Us
  • ISSN: 2456-8635

International Journal Of Horticulture, Agriculture And Food Science(IJHAF)

Production of Genetically Modified Grape (Vitis vinifera L.) Plants

Hemaid Ibrahim Ahemaidan Soliman


International Journal of Horticulture, Agriculture and Food science(IJHAF), Vol-2,Issue-4, July - August 2018, Pages 111-120, 10.22161/ijhaf.2.4.1

Download | Downloads : 20 | Total View : 1155

Share

Grape (Vitis vinifera L.) is one of the most economically important fruits in the world. High salinity stress adversely affects plant growth and limits agricultural production worldwide. This study describes a successful method of somatic embryogenesis using in vitro-derived leaf explants and introduction of a vacuolar-type Na+/H+ antiporter gene from a halophytic plant, Atriplex gmelini (AgNHX1) confers salt tolerance to grape cv. Superior Seedless using the Agrobacterium-mediated transformation. Callus embryogenic was induced on NN medium 2.0 mgL-1 2,4-D, 0.5 mgL-1 BAP and 0.5 mgL-1 NAA. Subsequent subculture of callus on NN medium containing 1.5 mgL-1 BAP, 0.5 mgL-1kinetin and 0.5 mgL-1NAA induced shoot organogenesis after eight weeks of culture. The leaf explants were co-cultivated with Agrobacterium strain LBA4404 harbouring the binary vector pBI121 which contained the AgNHX1 and nptII genes and putative transgenic plants were produced. The presence and stable integration of AgNHX1 gene in transgenic plants was confirmed by PCR and northern blot hybridization. The transgenic grape plants overexpressing the AgNHX1 gene showed a strong tolerance to salt stress under 250 mM NaCl, whereas non-transgenic plants died under the same conditions. Salt tolerance assays followed by salt treatments showed that the transgenic plants overexpressing AgNHX1 could survive under conditions of 250 mM NaCl for 4 weeks while the non-transgenic plants died under the same conditions. These results indicate that overexpression of the Na+/H+ antiporter gene in grape plants significantly improves their salt tolerance.

Grape (Vitis vinifera L.), regeneration, transformation, Na+/H+ antiporter, PCR and northern blot hybridization.

[1] Apse, M.P., Aharon, G.S., Snedden, W.A. and Blumwald, E. (1999). Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in arabidopsis. Science, 285: 1256–1258.
[2] Bartels, D., Sunkar, R. (2005). Drought and salt tolerance in plants. Critical Reviews in Plant Sciences, 24, 23-58.
[3] Botti, C., Garay, L. and Reginato, G. (1993). The influence of culture dates, genotype and size and type of shoot apices on in vitro shoot proliferation of Vitis vinifera cvs. Thompson Seedless, Ribier and Black Seedless. Vitis, 32:125–126.
[4] Das, D.K., Reddy, M.K., Upadhyaya, K.C. and Sopory, S.K. (2002). An efficient leaf disc culture method for the regeneration via somatic embryogenesis and transformation of grape (Vitis vinifera L.). Plant Cell Reports, 20: 999-1005.
[5] Dorani-Uliaie, E., Ghareyazie, B., Farsi, M., Kogel, K. and Imani, J. (2012). Improved salt tolerance in canola (Brasica napus) plants by overexpression of arabidopsis Na+/H+ antiporter gene AtNHX1. J Plant Mol Breed., 1:34–42.
[6] Ehab, M. R. Metwali, Hemaid, I. A. Soliman, Fuller, M. P., Al-Zahrani, H. S. and Howladar, S. M. (2015). Molecular cloning and expression of a vacuolar Na+/H+ antiporter gene (AgNHX1) in fig (Ficus carica L.) under salt stress. Plant Cell, Tissue and Organ Culture, 123:377–387.
[7] Ehab, M.R. Metwali, Hemaid, .I.A. Soliman, Omar .A. Almaghrabi and Naif M. Kadasa (2016). Producing Transgenic Thompson Seedless' Grape (Vitis vinifera L.) plants using Agrobacterium tumefaciens. International Journal of Agriculture and Biology, 18-3-661-670.
[8] Fukuda, Y., Ohme, M. and Shinshi, H. (1991). Gene structure and expression of a tobacco endochitinase gene in suspension-cultured cells. Plant Mol. Biol., 16:1–10.
[9] Fukuda, A., Nakamura, A. and Tanaka, Y. (1999). Molecular cloning and expression of the Na+/H+exchanger gene in Oryza sativa. Biochem. Biophys. Acta., 1446, 149-155.
[10] Fukuda, A., Chiba, K., Maeda, M., Nakamura, A., Maeshima, M. and Tanaka, Y. (2004). Effect of salt and osmotic stresses on the expression of genes for the vacuolar H+ pyrophosphatase H+-ATPase subunit A, and Na+/H+ antiporter from barley. J. Exp. Bot., 55: 585–594.
[11] Gambino, G., Grebaudo, I., Leopold, S., Schartl, A. and Laimer, M. (2005). Molecular Characterization of grapevine plants transformed with GPLV resistance genes: I. Plant Cell Reports, 24: 655-662.
[12] Gaoge ,W., Yuhui, L., Peng, X. and Delin, D. (2005). A simple method for DNA extraction from sporophyte in the brown alga Laminaria ponica. Applied Phycology, 8:1573-5176.
[13] Gharyal, P.K., Maheshwari, S.C. (1990). Differentiation in explants from mature leguminous tree. Plant Cell Reports, 8, 550.
[14] Glick, B.R., Cheng, Z., Czarny J. and Duan, J. (2007). Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur. J. Plant Pathol., 119:329–339.
[15] Gray, D.J., Jayasankar, S. and Li, Z. (2005). Vitaceae (Vitis spp.). In: Litz RE (ed.). Biotechnology of Fruit and Nut Crops. CAB International Wallingford, Oxford, UK. Pp. 672-706.
[16] Gray, D.J., Li, Z.T. and Dhekney, S.A. (2014). Precision breeding of grapevine (Vitis vinifera L.) for improved traits. Plant Science, 228:3–10.
[17] Guan, B., Hu, Y., Zeng, Y., Wang, Y. and Zhang, F. (2011). Molecular characterization and Functional analysis of a vacuolar Na+/H+ antiporter gene (HcNHX1) from Halostachys caspica. Molecular Biology Rep., 38:1889-1899.
[18] Hamada, A., Shono, M., Xia, T., Ohta, M., Hayashi, Y., Tanaka, A. and Hayakawa, T. (2001). Isolation and characterization of a Na+/H+ antiporter gene from the halophyte Atriplex gmelini. Plant Mol. Biol., 46: 35–42.
[19] Hasegawa, P.M., Bressan, R.A., Zhu, J.K. and Bohnert, H.J. 2000. Plant cellular and molecular Responses to high salinity. Annu. Rev. Plant. Physiol. Plant. Mol. Biol., 51: 463–499.
[20] Hayakawa, T., Zhu, Y., Itoh, K., Kimura, Y., Izawa, T., Shimamoto, K. and Toriyama, S. (1992). Genetically engineered rice resistant to rice stripe virus, an insect-transmitted virus. Proc, Natl Acad Sci., USA 89:9865–9869.
[21] Iocco, P., Franks, T.M. and Thomas, R. (2001). Genetic transformation of major wine grape cultivars of Vitis vinifera L. Transgenic Res., 10: 105-112.
[22] Kulaeva, O. N. (1980). Cytokinin action on enzyme activities in plants, pp. 119-128. In: Plant Growth Substances 1979 - Proceedings of the 10th International Conference on Plant Growth Substances, Skoog F. (Ed.), Springer.
[23] Ma, X.L., Zhang, Q., Shi, H.Z., Zhu, J.K., Zhao, Y.X., Ma, C.L. and Zhang, H. (2004). Molecular cloning and different expression of a vacuolar Na+/H+ antiporter gene in Suaeda salsa under salt stress. Biologia Plantarum, 48 (2): 219–225.
[24] Maas, E.V., Hoffman, G.J. (1977). Crop salt tolerance - current assessment. J. Irrig. and Drainage Div., ASCE 103 (IR2): 115-134.
[25] Maity, S., Ray, S. and Banerjee, N. (2005). The role of plant growth regulators on direct and indirect plant regeneration from various organs of Leucaena leucocephala. Acta Physiologia Plantarum, 27: 473–840.
[26] Masaru, O., Yasuyuki, H., Asae, N., Akira, H., Akira, T., Tatsunosuke, N. and Takahiko, H. (2002). Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Letters, 532; 279-282.
[27] Motioike, S.Y.R., Skirvin, R.M., Norton, M.A. and Otferbacher, A.G. (2002). Development of methods to genetically transform American grape (Vitis labruscana L.H. Bailey). J. Hort. Sci. Biotech., 77: 691-696.
[28] Nadra, K., Maqsood, A., Ishfaq, H., Nadeem, A., Shaghef E. and Muhammad, A. (2015). Optimizing the concentrations of plant growth regulators for in vitro shoot culture, callus induction and shoot regeneration fro calluses of grapes J. Int. Sci. Vigne Vin., 49, 37-45.
[29] Nitsch, J.P., Nitsch, C. (1969). Haploid plants from pollen grains. Science.163: 85‒87.
[30] Perl, A., Lotan, O., Abu-Abied, M. and Holland, D. (1996). Establishment of an Agrobacterium mediated transformation system for grape (Vitis vinifera L.): the role of antioxidants during grape- Agrobacterium interactions. Nat Biotech., 14: 624628.
[31] Reisch, B.I. 1986. Influence of genotype and cytokinins on in vitro shoot proliferation of grapes. J Am Soc Hortic Sci., 111:138–141.
[32] Sajid, M.G., Ilyas, M.K. and Anwar, R. (2006). Effect of diverse hormonal regimes on in vitro growth of grape germplasm. Pak. J. Bot., 38: 385-391.
[33] Singh, S.K., Sharma, H C., Goswami, A.M. and Singh, S. P. (2000). In vitro screening of some grape genotypes (Vitis spp.) for NaCl tolerance. Physiology and Molecular Biology of Plants, 6 (2):175-178.
[34] Snedecor, G.W., Cochran, W.G. (1982). Statistical Methods. 7th Edition, Iowa State University Press, Towa, 511.
[35] Wang, J., Zuo, K., Wu, W., Song, J., Sun, X., Lin, J., Li, X. and Tang, K. (2003). Molecular cloning and characterization of a new Na+/H+ antiporter gene from Brassica napus. DNA Seq., 14: 351–358.
[36] Xia, T., Apse, M.P., Aharon, G.S. and Blumwald, E. (2002). Identification and characterization of a NaCl inducible vacuolar Na+/H+ antiporter in Beta vulgaris. Physiologia Plantarum.116: 206–212.
[37] Xiaoqing, X., Cecilia, B., Agüero, Y. and Andrew Walker, M. 2016. Genetic transformation of grape varieties and rootstocks via organogenesis. Plant Cell, Tissue and Organ Culture, 126:541–552.
[38] Yamaguchi, T., Apse, M.P., Shi, H.Z. and Blumwald, E. (2003). Topological analysis of a Plant vacuolar Na+/H+ antiporter reveals a luminal C terminus that regulates antiporter cation selectivity. Proc. Natl. Acad. Sci., 100: 12510–12515.
[39] Zhang, G.H., Su, Q., An, L.J. and Song, W. (2008). Characterization and expression of a vacuolar Na+/H+ antiporter gene from the monocot halophyte Aeluropus littoralis. Plant Physiol. Biochem., 46: 117–126.
[40] Zhu, J.K. (2001). Plant salt tolerance. Trends in Plant Science, 6: 66-71.