[1] Cajka R., Marcalikova Z., Kozielova M., Mateckova P., Sucharda O. Experiments on Fiber Concrete Foundation Slabs in Interaction with the Subsoil. Sustainability. 2020;12:3939. doi: 10.3390/su12093939. [CrossRef] [Google Scholar]
[2] Ferrara L., Meda A. Relationships between fibre distribution, workability and the mechanical properties of SFRC applied to precast roof elements. Mater. Struct. 2006;39:411–420. doi: 10.1617/s11527-005-9017-4. [CrossRef] [Google Scholar]
[3] Markovic I. High-Performance Hybrid-Fibre Concrete. DUP Science DUP; Delft, The Netherlands: 2006. [Google Scholar]
[4] Walraven J.C. High performance fiber reinforced concrete: Progress in knowledge and design codes. Mater. Struct. 2009;42:1247–1260. doi: 10.1617/s11527-009-9538-3. [CrossRef] [Google Scholar]
[5] Liao L., De La Fuente A., Cavalaro S.H.P., Aguado A. Design procedure and experimental study on fibre reinforced concrete segmental rings for vertical shafts. Mater. Des. 2016;92:590–601. doi: 10.1016/j.matdes.2015.12.061. [CrossRef] [Google Scholar]
[6] Ferdous W., Aravinthan T., Manalo A., Van Erp G. Composite railway sleepers—New developments and opportunities; Proceedings of the 11th International Heavy Haul Association Conference: Operational Excellence (IHHA 2015); Perth, Australia. 21–24 June 2015. [Google Scholar]
[7] Ferdous W., Manalo A., Van Erp G., Aravinthan T., Kaewunruen S., Remennikov A. Composite railway sleepers—Recent developments, challenges and future prospects. Compos. Struct. 2015;134:158–168. doi: 10.1016/j.compstruct.2015.08.058. [CrossRef] [Google Scholar]
[8] Aslani F., Nejadi S. Self-compacting concrete incorporating steel and polypropylene fibers: Compressive and tensile strengths, moduli of elasticity and rupture, compressive stress–strain curve, and energy dissipated under compression. Compos. Part B Eng. 2013;53:121–133. doi: 10.1016/j.compositesb.2013.04.044. [CrossRef] [Google Scholar]
[9] Q.Zao, J.Yu, G.Geng, J.Jiang, X . Liu, Construction and Building Materials Journal, Effect of fiber types on creep behavior of concrete, 105, 416-422(2016)
[10] S. Kakooei, H. Md Akil, M. Jamshidi, J. Rouhi,Construction and Building Materials Journal, The effects of polypropylene fibers on the properties of reinforced concrete structures, 27, 73-77(2012)
[11] S. Alsadey, M. Salem, American Journal of Engineering Research,Influence of polypropylene fiber on strength of concrete, 5, pp 223-226(2016).
[12] P.Zhang, Q. Li, Composites Part B: Engineering Journal,Effect of polypropylene fiber on durability of concrete composite containing fly ash and silica fume,45, 1587-1594(2013).
[13] G.M. SadiqulIslam, S. DasGupta. International Journal of Sustainable Built Environment, Evaluating plastic shrinkage and permeability of polypropylene fiber reinforced concrete, 5, 345-354(2016).
[14] ASTM International, Standard test method for splitting tensile strength of cylindrical concrete specimens(ASTM C496, 2002).
[15] ASTM International, Standard test method for flexural strength of concrete (Using Simple Beam with Third-Point Loading (ASTM C78, 2002) 10. ASTM International, Standard test method for compressive strength of cylindrical concrete specimens(ASTM C39, 2002).
[16] M. A. Mohamed, M. A.Moh, N. W. Akasha, I. Y. I. Elgady, experimental study on effects of fiberglass and fiber waste in concrete mixes, International Journal of Engineering Science & Research Technology, 3, 485-493, (2016).
[17] .B. Graybeal A., F. Baby, Development of Direct Tension Test Method for Ultra-HighPerformance Fiber-Reinforced Concrete, ACI Materials Journal, 110, 177-186, (2013)
[18] Mohammadi, Y., Singh, S.P., & Kaushik, S.K. (2008). Properties of steel fibrous concrete containing mixed fibers in fresh and hardened states. Construction Building Materials, 22, 956-965. https://www.sciencedirect.com/science/article/abs/pii/S0950061806003515 [ Links ]
[19] Nicolas, A.L., Mohammad, S., Mehrdad, M., & Parviz, S. (2011). Mechanical properties of hybrid fiber reinforced lightweight aggregate concrete made with natural pumice. Construction Building Materials, 25, 2458-2464. https://www.academia.edu/4300079/Mechanical_properties _of_hybrid_fiber_reinforced_lightweight_aggregate_concrete_made_with_natural_pumice [ Links ]
[20] Pujadas, P., Blanco, A., Cavalaro, S., and Aguado, A. (2014). Plastic fibres as the only reinforcement for flat suspended slabs: Experimental investigation and numerical simulation. Construction Building Materials, 57, 92-104. https://www.atem.upc.edu/plastic-fibres-as-the-only-reinforcement-for-flat-suspended-slabs-experimental-investigation-and-numerical-simulation/ [ Links ]
[21] Pujadas, P., Blanco, A., Cavalaro, S., De la Fuente, A & Aguado, A. (2017). Flexural post-cracking creep behaviour of macro-synthetic and steel fiber reinforced concrete. International RILEM Workshop on creep behaviour in cracked section of Fibre Reinforced Concrete, 77-87. https://link.springer.com/book/10.1007/978-94-024-1001-3 [ Links ]
[22] Swamy, R.N., & Lixian, W. (1995). The ingredients for high performance in structural lightweight aggregate concrete. In: Holand et al ., editors. Proceedings of the International Symposium on Structural Lightweight Aggregate Concrete 20-24 June 1995, Sandefjord, Norway. Oslo: The Norwegian Concrete Association, 628-639. [ Links ]
[23] Wafa, F.F., & Ashour, S.A. (1992). Mechanical properties of high-strength fiber reinforced concrete. ACI Materials Journal, 90(5), 449-455. https://scholar.google.co.in/scholar?q=.+Mechanical+properties+of+high-strength+fiber+reinforced+concrete [ Links ]