[1] Y. Ji, H. Chizeck, “Controllability, stabilizability and continuous-time Markovian jump linear quadratic control,†IEEE Trans. Autom. Control, vol.35, pp.777-788, 1990.
[2] W.-H. Chen, Z.-H. Guan, X.-M. Lu, “Robust H1 control of neutral delay system switch Markovian jumping parameters,†Control Theory Appl., Vol.20, pp.776-778, 2003.
[3] L.L. Xiong, J.K. Tian, X.Z. Liu, “Stability analysis for neutral Markovian jump systems with partially unknown transition probabilities,†J. Frankl. Inst., vol.349, pp.2193-2214, 2012.
[4] S.Y. Xing, F.Q. Deng, “Delay-dependent H filtering for discrete singular Markov jump systems with Wiener process and partly unknown transition probabilities,†J. Frankl. Inst., vol.355, pp.6062-6086, 2018.
[5] A.N. Vargas, M.A.F. Montezuma, X.H. Liu, R.C.L.F. Oliveira, “Robust stability of Markov jump linear systems through randomized evaluations, †Appl. Math. Comput., vol.346, pp.87-294, 2019.
[6] O.M. Kwon, Ju H. Park, S.M. Lee, “On stability criteria for uncertain delay-differential systems of neutral type with time-varying delays,†Appl. Math. Comput., vol.197, pp.864-873, 2008.
[7] C.C. Shen, S.M. Zhong, “New delay dependent robust stability criterion for uncertain neutral systems with time-varying delay and nonlinear uncertainties,†Chaos, Solitons Fractals, vol.40, pp.2277-2285, 2009.
[8] Y.L. Dong, W.J. Liu, T.R. Li, S. Liang, “Finite-time boundedness analysis and H control for switched neutral systems with mixed time-varying delays,†J. Frankl. Inst., vol.354, pp.787-811, 2017.
[9] P. Balasubramaniam etc. “Exponential stability results for uncertain neutral systems with interval time-varying delays and Markovian jumping parameters,†Appl. Math. Comput., vol.216, pp.3396-3407, 2010.
[10] L.L. Xiong, J.K. Tian, X.Z. Liu, “Stability analysis for neutral Markovian jump systems with partially unknown transition probabilities,†J. Frankl. Inst., vol.2012, pp.2193-2214, 349.
[11] W.M. Chen, B.Y. Zhang, Q. Ma, “Decay-rate-dependent conditions for exponential stability of stochastic neutral systems with Markovian jumping parameters,†Appl. Math. Comput., vol.321, pp.93-105, 2018.
[12] T. Wu, L.L. Xiong, J.D. Cao, Z.X. Liu, H.Y. Zhang, “New stability and stabilization conditions for stochastic neural networks of neutral type with Markovian jumping parameters,†J. Frankl. Inst., vol.355, pp.8462-8483, 2018.
[13] S. Boyd, L. El Ghaoui, E. Feron, V. “Balakrishnan, Linear matrix inequalities in systems and control theory,†Philadelphia PA: SIAM, 1994.
[14] Al. Claudio, “The reachable set of a linear endogenous switching system,†Syst. Control Lett., vpl.47, pp.343-353, 2002.
[15] T. Pecsvaradi, “Reachable Sets for Linear Dynamical Systems,†Informat. Control, vol.19, pp.319-344, 1971.
[16] E. Fridman, “On reachable sets for linear systems with delay and bounded peak inputs,†Automatica, vol.39, pp.2005-2010, 2003.
[17] T. Hu, Z. Lin, “Control Systems with Actuator Saturation: Analysis and Design,†Boston: Birkhauser, 2001.
[18] J.H. Kim, “Improved ellipsoidal bound of reachable sets for time-delayed linear systems with disturbances,†Automatica, vol.44 pp.2940-2943, 2008.
[19] T.I. Seidman, “Time-Invariance of the Reachable Set for Linear Control Problems,†J. Math. Anal. Appl., vol.72, pp.17-20, 1979.
[20] Z.Q. Zuo, D.W.C. Ho, Y.J. Wang, “Reachable set bounding for delayed systems with polytopic uncertainties: The maximal Lyapunov-Krasovskii functional approach,†Automatica, vol.46, pp.949-952, 2010.
[21] C.C. Shen, S.M. Zhong, “The ellipsoidal bound of reachable sets for linear neutral systems with disturbances,†J. Frankl. Inst., 348 (2011) 2570-2585.
[22] W.J. Lin, Y. He, M. Wu, Q.P. Liu, “Reachable set estimation for Markovian jump neural networks with time-varying delay,†Neural Networks, pp.108, 527-532, 2018.