• editor.aipublications@gmail.com
  • Track Your Paper
  • Contact Us
  • ISSN: 2456-8678

International Journal Of Rural Development, Environment And Health Research(IJREH)

Anti-diabetic Therapies, Strategies for Diabetes Management, and Advancement in Drug Delivery Systems: A Review

Gurkirat Kaur , Rajesh Kumar , Ajeet Pal Singh , Amar Pal Singh , Prachi Sharma


International Journal of Rural Development, Environment and Health Research(IJREH), Vol-8,Issue-2, April - June 2024, Pages 7-22,

Download | Downloads : 1 | Total View : 132

Article Info: Received: 25 Jan 2024; Received in revised form: 09 Mar 2024; Accepted: 20 Mar 2024; Available online: 02 Apr 2024

Share

Diabetes Mellitus (DM) stands as a prominent metabolic disorder characterized by impaired insulin activity and/or secretion, leading to various pathological complications such as nephropathy, retinopathy, and cardiovascular issues. This review delves into the intricacies of Diabetes Mellitus (DM), exploring its sub-types, conventional treatment modalities, and the emerging role of nanotechnology in revolutionizing drug delivery for improved therapeutic outcomes. Pathophysiology of Diabetes Mellitus manifests through aberrations in insulin dynamics, leading to hyperglycemia and subsequent tissue damage. Understanding the underlying pathophysiological mechanisms is crucial for devising effective therapeutic strategies. Classification of Diabetes Mellitus is broadly categorized into Type 1 and Type 2, each with distinct etiological factors and treatment approaches. Type 1 DM necessitates insulin replacement therapy, whereas Type 2 DM is primarily managed through oral hypoglycemic agents. Insulin replacement therapy is the cornerstone of treatment for Type 1 DM. It involves administering exogenous insulin to mimic the physiological insulin secretion that is deficient in individuals with T1DM. This aims to maintain blood glucose levels within a normal range to prevent acute as well as long-term complications. Drug therapy for Type 2 Diabetes Mellitus : The pharmacological armamentarium for Type 2 DM includes Insulin Secretagogues, Biguanides, Insulin Sensitizers, α-Glucosidase Inhibitors, Incretin Mimetics, Amylin Antagonists, and SGLT2 Inhibitors. The Complex pathophysiology of DM demands innovatives therapeutic approaches to enhance drug efficacy and patient adherence. Nanotechology offers promising solutions by enabling targeted drug delivery, improved bioavailability, and reduced dosing frequency. Clinical Implications and Future Perspectives Nanotechnology holds immense potential in revolutionizing diabetes management by addressing the limitations of conventional therapies and enhancing therapeutic efficacy. Future research endeavors should focus on translational studies to validate the clinical utility of nanotechnology-based drug delivery systems. In Conclusion, the integration of nanotechnology into Diabetes management offers a paradigm shift in therapeutic approaches, promising targeted drug delivery, improved bioavailability, and enhanced patient outcomes. Continued research and development in this field are imperative to realize the full potential of nanotechnology in combating the global burden of Diabetes Mellitus. In this article, we endeavor to delve into the pathophysiolgy of Diabetes Mellitus (DM), traditional treatment methods for both Type 1 (T1DM) and Type 2 (T2DM) diabetes, alongside innovative drug delivery strategies for managing Diabetes Mellitus.

Pathophysiology of DM, Insulins for Type 1 Diabetes Mellitus, Non-insulin Modalities for Type 2 Diabetes Mellitus, Single-drug Therapy (Monotherapy), Multi-drug Therapy (Combination therapy), Innovative Drug Delivery System

[1] R. Khursheed, S. Singh, S. Wadhwa, B. Kapoor, M. Gulati, R. Kumar, et al.,Treatment strategies against diabetes: Success so far and challenges ahead, Eur. J. Pharmacol. 862 (2019) 172625, https://doi.org/10.1016/j.ejphar.2019.172625.
[2] S. Wild, G. Roglic, A. Green, R. Sicree, H. King, Global Prevalence of Diabetes: Estimates for the year 2000 and projections for 2030, Diabetes. Care 27 (2004) 1047-1053, https://doi.org/10.2337/diacare.27.5.1047.
[3] C. Wong, H. Al-Salami, C. Dass, Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment, J. Control. Release 264 (2017) 247-275, https://doi.org/10.1016/jjconrel.2017.09.003.
[4] A. Chaudhury, C. Duvoor, V.S.R. Dendi, S. Kraleti, A. Chada, R. Ravilla, et al., Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management, Front. Endocrinol. 8 (2017) 1-12, https://doi.org/10.3389/ fendo.2017.00006.
[5] K.R. Feingold, et al., in: K.R. Feingold, B. Anawalt, A. Boyce (Eds.), Oral and Injectable (Non-insulin) Pharmacological Agents for Type 2 Diabetes, MDText. Com, Inc., South Dartmouth (MA), 2000. Endotext [Internet]. [Updated 2019 Jul 8], Available from: https://www.ncbi.nlm.nih.gov/books/NBK279141/.
[6] S. Tan, J. Mei Wong, Y. Sim, S. Wong, S. Mohamed Elhassan, S. Tan, et al., Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention, Diabetes. Metab. Syndr. 13 (2019) 364372, https://doi.org/10.1016/j.dsx.2018.10.008.
[7] E. Souto, S. Souto, J. Campos, P. Severino, T. Pashirova, L. Zakharova, et al., Nanoparticle Delivery Systems in the Treatment of Diabetes Complications, Molecules 24 (2019) 4209, https://doi.org/10.3390/molecules24234209.
[8] S. Uppal, K.S. Italiya, D. Chitkara, A. Mittal, Nanoparticulate-based drug delivery systems for small molecule anti-diabetic drugs: An emerging paradigm for effective therapy, Acta. Biomater. 81 (2018) 20-42, https://doi.org/10.1016/j.actbio.2018.09.049.
[9] M.M. Abbasi, H. Valizadeh, H. Hamishehkar, P. Zakeri-Milani, Inhibition of p- glycoprotein expression and function by anti-diabetic drugs gliclazide,Metformin, and pioglitazone in vitro and in situ, Res. Pharm. Sci. 11 (2016) 177-186. PMCID: PMC4962298.
[10] T. Kobori, S. Harada, K. Nakamoto, S. Tokuyama, Functional Alterations of Intestinal P-Glycoprotein under Diabetic Conditions, Biol. Pharm. Bull. 36 (2013) 1381-1390, https://doi.org/10.1248/bpb.b13-00369.

[11] M. Okur, I. Karantas, P. Siafaka, Diabetes Mellitus: A Review on Pathophysiology,Current Status of Oral Pathophysiology, Current Status of Oral Medications and Future Perspectives, ACTA Pharm Sci. 55 (2017) 61,https://doi.org/10.23893/1307-2080.aps.0555.
[12] A. Mayorov, Insulin resistance in pathogenesis of type 2 diabetes mellitus, Diabetes. Mellitus. 14 (2011) 35-45,https://doi.org/10.14341/2072-0351-6248.
[13] A. Ojha, U. Ojha, R. Mohammed, A. Chandrasekhar, H. Ojha, Current perspectiveOn the role of insulin and glucagon in the pathogenesis and treatment of type 2 diabetes mellitus, ClinPharmacol. 11 (2019) 57-65, https://doi. Org/10.2147/ CPAA.S202614.
[14] K. Kaku, Pathophysiology of Type 2 Diabetes and Its Treatment Policy, JMAJ 53 (2010) 41-46.
[15] S.E. Kahn, M.E. Cooper, S.D. Prato, Pathophysiology and Treatment of Type 2 Diabetes: Perspectives on the Past, Present and Future, Lancet 383 (2014) 1068-1083, https://doi.org/10.1016/S0140-6736(13)62154-62156.
[16] L. Hieronymus, S. Griffin, Role of Amylin in Type 1 and Type 2 Diabetes, Diabetes. Educ. 41 (2015) 47S-56S, https://doi.org/10.1177/ 0145721715607642.
[17] D. Stringer, P. Zahradka, C. Taylor, Glucose transporters: cellular links to hyperglycaemia in insulin resistance and diabetes, Nutr. Rev. 73 (2015) 140-154, https://doi.org/10.1093/nutrit/nuu012.
[18] H. Rang, M. Dale, J. Ritter, P. Moore, Pharmacology, ninth ed., 2003,pp. 408-419. Churchill Livingstone, Edinburg.
[19] R. DeFronzo, From the Triumvirate to the Oninous Octet: A New Paradigm for the Treatment of Type 2 Diabetes Mellitus, Diabetes 58 (2009) 773-795, https:// doi.org/10.2337/db09-9028.
[20] K. Akhalya, S. Sreelatha, Rajeshwari, K. Shruthi, A review article- gestational diabetes mellitus, Endocrinol. Metab, Int. J. 7 (2019) 26-39, https://doi.org/ 10.15406/emij.2019.07.00238.
[21] H.D. Mcintyre, P. Catalano, C. Zhang, G. Desoye, E.R. Mathiesen, P. Damm, Gestational diabetes mellitus, Nat. Rev. Dis. Primers. 5 (2019), https://doi.org/ 10.1038/s41572-019-0098-8.
[22] X. Sun, W. Yu, C. Hu, Genetics of Type 2 Diabetes: Insights into the Pathogenesis and Its Clinical Application, BioMed Res. Int. 2014 (2014), 926713, https://doi. Org/10.1155/2014/926713, 15.
[23] K. Kayani, R. Mohammed, H. Mohiaddin, Cystic Fibrosis-Related Diabetes, Front. Endocrinol. 9 (2018), https://doi.org/10.3389/fendo.2018.00020.
[24] J.C. Barton, R.T. Acton, Diabetes in HFE Hemochromatosis, J. Diabetes. Res. (2017), 9826930, https://doi.org/10.1155/2017/9826930, 16 pages.
[25] M. Barbot, F. Ceccato, C. Scaroni, Diabetes Mellitus Secondary to Cushing’s disease, Front. Endocrinol. 9 (2018) 284, https://doi.org/10.3389/ fendo.2018.00284.
[26] F. Ferraù, A. Albani, A. Ciresi, C. Giordano, S. Cannavò, Diabetes Secondary to Acromegaly: Physiopathology, Clinical Features and Effects of Treatment, Front. Endocrinol. 9 (2018) 358, https://doi. Org/10.3389/fendo.2018.00358.
[27] C. Wang, The Relationship between Type 2 Diabetes Mellitus and Related Thyroid Diseases, J. Diabetes. Res. 2013 (2013), 390534, https://doi.org/10.1155/2013/ 390534, 9 pages.
[28] N. Ewald, P. Hardt, Diagnosis and treatment of diabetes mellitus in chronic pancreatitis, World. J. Gastroenterol. 19 (2013) 7276, https://doi.org/10.3748/ Wig.v19.i42.7276.
[29] A. De Souza, K. Irfan, F. Masud, M.W. Saif, Diabetes Type 2 and Pancreatic Cancer: A History Unfolding, JOP 17 (2016) 144-148. PMCID: PMC5860818.
[30] Corticosteroids are used to reduce harmful inflammation but can lead to diabetes – often referred to as steroid diabetes, Diabetes (2020) (accessed 10 August 2020), https://www.diabetes.co.uk/drug-induced-diabetes.html.
[31] S. Kalra, B. Kalra, N. Agrawal, A. Unnikrishnan, Understanding diabetes in patients with HIV/AIDS, Diabetol. Metab. Syndr. 3 (2011), https://doi.org/ 10.1186/1758-5996-3-2..
[32] Y. Wu, Y. Ding, Y. Tanaka, W. Zhang, Risk Factors Contributing to Type 2 Diabetes and Recent Advances in the Treatment and Prevention, Int. J. Med. Sci. 11 (2014) 1185-1200, https://doi.org/10.7150/ijms. 10001.
[33] R. Streisand, M. Monaghan, Young Children with Type 1 Diabetes: Challenges, Research, and Future Directions, Curr. Diabetes. Rep. 14 (2014), https://doi.org/10.1007/s11892-014-0520-2.
[34] A. Olokoba, O. Obateru, L. Olokoba, Type 2 Diabetes Mellitus: A Review of Current Trends, Oman Med. J. 27 (2012) 269-273, https://doi.org/10.5001/ omj.2012.68.
[35] Y. Khazrai, G. Defeudis, P. Pozzilli, Effect of diet on type 2 diabetes mellitus: a review, Diabetes. Metab. Res. Rev. 30 (2014) 24-33, https://doi.org/n0.1002/dmrr.2515.
[36] R. Eckel, S. Kahn, E. Ferrannini, A. Goldfine, D. Nathan, M. Schwartz, et al., Obesity and Type 2 Diabetes: What Can Be Unified and What Needs to Be Individualized? Diabetes Care. 34 (2011) 1424-1430, https://doi.org/10.2337/ dcl1-0447.
[37] A. Boles, R. Kandimalla, P. Reddy, Dynamics of diabetes and obesity: Epidemiological perspective, Biochim. Biophys. Acta. Mol. Basis Dis. 1363 (2017) 1026—1036, https://doi.org/10.1016/j.bbadis.2017.01.016.
[38] A. Gambineri, L, Patton, P. Altieri, U. Pagotto, C. Pizzi, L. Manzoli, et a., Polycystic Ovary Syndrome Is a Risk Factor for Type 2 Diabetes: Results from a Long-Term Prospective Study, Diabetes 61 (2012) 2369-2374, https://doi.org/10.2337/dbl1-1360.
[39] K. Papatheodorou, M. Banach, E. Bekiari, M. Rizzo, M. Edmonds, Complications of Diabetes 2017, J. Diabetes. Res. 2018 (2018) 1-4, htps://doi.org/10.1155/ 2018/3086167.
[40] A. MirghaniDirar, J. Doupis, Gestational diabetes from A toZ, World. J. Diabetes. 8 (2017) 489-511, https://doi.org/10.4239/wjd.v8.i12,489.
[41] S. Seino, K. Sugawara, N. Yokoi, H. Takahashi, -Cell signalling and insulin Secretagogues: A path for improved diabetes therapy, Diabetes. Obes. Metab, 19 (2017) 22-29, https://doi.org/10.1111/dom.12995.
[42] S. Kalra, S. Bahendeka, R. Sahay, S. Ghosh, F. Mă, A. Orabi, et al., Consensus recommendations on sulfonylurea and sulfonylurea combinations in the Management of Type 2 diabetes mellitus – International Task Force. Indian J. Endocr. Metab. 22 (2018) 132, https://doi. Org/10.4103/ijem.ijem 556 17.
[43] D. Sola, L. Rossi, G. Schianca, P. Maffioli, M. Bigliocca, R. Mella, et al., State of the art paper Sulfonylureas and their use in clinical practice, Arch. Med. Sci. 4 (2015) 840-848, https://doi.org/10.5114/aoms,. 2015.53304.
[44] B. Hemmingsen, D.P. Sonne, M.I. Metzendorf, B. Richter, Insulin secretagogues for prevention or delay of type 2 diabetes mellitus and its associated complications in persons at increased risk for the development of type 2 diabetes mellitus, Cochrane Database. Syst. Rev. 10 (2016) 1-30, https://doi.org/ 10.1002/14651858.CD012151.pub2.
[45] D.M. Quillen, G. Samraj, L. Kuritzky, Improving Management of Type 2 Diabetes Mellitus: 2. Biguanides, Hosp. Pract. 34 (1999) 41-44, https://doi.org/10.1080/ 21548331.1999.11443925.
[46] E. Rubiño, E. Carrillo, G. Alcalá, A. Domínguez-Martín, J. Marchal, H. Boulaiz, Phenformin as an Anticancer Agent: Challenges and Prospects, Int. J. Mol. Sci. 20 (2019) 3316, https://doi.org/10.3390/ijms20133316.
[47] 0. Bourron, M. Daval, I. Hainault, E. Hajduch, J. Servant, J. Gautier, etal., Biguanides and thiazolidinediones inhibit stimulated lipolysis in human adipocytes through activation of AMP-activated protein kinase, Diabetologia 53 (2009) 768-778, https://doi.org/10.1007/s00125-009-1639-6.
[48] E. Sanchez-Rangel, S. Inzucchi, Metformin: clinical use in type 2 diabetes, Diabetologia 60 (2017) 1586-1593, https://doi.org/10.1007/s00125-017-4336-x.
[49] S. Tyagi, S. Sharma, P. Gupta, A. Saini, C. Kaushal, The peroxisome proliferator- activated receptor: A family of nuclear receptors role in various diseases, J. Adv. Pharm. Technol. Res. 2 (2011) 236, https://doi.org/10.4103/2231-4040.90879.
[50] N. Thangavel, M. Al Bratty, S. Akhtar Javed, W. Ahsan, H. Alhazmi, Targeting Peroxisome Proliferator-Activated Receptors Using Thiazolidinediones: Strategy for Design of Novel Antidiabetic Drugs, Int. J. Med. Chem. 2017 (2017) 1-20, https://doi.org/10.1155/2017/1069718.
[51] J. Greenfield, D. Chisholm, Experimental and clinical pharmacology: Thiazolidinediones – mechanisms of action, Aust. Prescr. 27 (2004) 67-70, https://doi.org/10.18773/austprescr.2004.059.
[52] H. Lebovitz, Thiazolidinediones: the Forgotten Diabetes Medications, Cur. Diabetes. Rep. 19 (2019) 151, https://doi.org/10.1007/s1 1892-019-1270-y.
[53] P. Balakumar, N. Mahadevan, R. Sambathkumar, A Contemporary Overview of PPARa/y Dual Agonists for the Management of Diabetic Dyslipidemia, Curr. Mol. Pharmacol. 12 (2019) 195-201, https://doi.org/10.2174/ 187446721 2666190111165015.
[54] A.A. Amato, F.A.R. Neves, Idealized PPARy-Based Therapies: Lessons from Bench and Bedside, PPAR Res. 2012 (2012), 978687, https://doi.org/10.1155/2012/ 978687, 9 pages.
[55] M. Asif, The prevention and control the type-2 diabetes by changing lifestyle and dietary pattern, J. Edu. Health Promot. 3 (2014) 1, https://doi.org/10.4103/2277-9531.127541.
[56] Alpha-Glucosidase Inhibitors for Diabetes, Precose&Glyset for Type 2 Diabetes, 2019 (assessed 21 December 2019), https://www.webmd.com/diabetes/alpha-glucosidase-inhibitors-diabetes.
[57] U. Wehmeier, W. Piepersberg, Biotechnology and molecular biology of the a – glucosidase inhibitor acarbose, Appl. Microbiol. Biot. 63 (2004) 613-625, https://doi.org/10.1007/s00253-003-1477-2.
[58] T. Narita, H. Yokoyama, R. Yamashita, T. Sato, M. Hosoba, T. Morii, et al., Comparisons of the effects of 12-week administration of miglitol and voglibose on the responses of plasma incretins after a mixed meal in Japanese type 2 diabetic patients, Diabetes. Obes. Metab. 14 (2011) 283-287, https://doi.org/10.1111/ j.1463-1326.201 1l.01526.x.
[59] G. Derosa, R. Mereu, A. D’Angelo, S. Salvadeo, I. Ferrari, E. Fogari, et al., Effect of pioglitazone and acarbose on endothelial inflammation biomarkers during oral glucose tolerance test in diabetic patients treated with sulphonylureas and metformin, J. Clin. Pharm. Ther. 35 (2010) 565-579, https://doi. Org/10.1111/j.1365-2710.2009.01132.x.
[60] Alpha-glucosidase inhibitors, Diabetes (2019) (accessed 15 January 2019), https ://www.diabetes.co.uk/diabetes-medication/alpha-glucosidase-inhibitor.html.
[61] G. Derosa, P. Maffioli, Mini-Special Issue paper Management of diabetic patients with hypoglycemic agents a-Glucosidase inhibitors and their use in clinical practice, Arch. Med. Sci. 5 (2012) 899-906, https://doi.org/10.5114/ aoms.2012.31621.

[62] R. Holt, K. Lambert, The use of oral hypoglycaemic agents in pregnancy, Diabet. Med. 31 (2014) 282-291, https://doi.org/10.1111/dme. 12376.
[63] E. Adeghate, H. Kalász, Amylin Analogues in the Treatment of Diabetes Mellitus: Medicinal Chemistry and Structural Basis of its Function, Open. J. Med. Chem. 5 (2011) 78-81, https://doi.org/10.2174/1874104501105010078.
[64] O. Schmitz, B. Brock, J. Rungby, Amylin Agonists: A Novel Approach in the Treatment of Diabetes, Diabetes 53 (2004) S233 S238, https://doi.org/10.2337/ diabetes.53.suppl 3.s233.
[65] B. Hoogwerf, Pramlintide, the synthetic analogue of amylin: physiology, pathophysiology, and effects on glycemic control, body weight, and selected biomarkers of vascular risk, Vasc. Health. Risk. Manag. 4 (2008) 355-362, https://doi. Org/1 0.2147/vhrm.s1978.
[66] K.B. Hansen, T. Vilsboll, F.K. Knop, Incretinmimetics: a novel therapeutic option for patients with type 2 diabetes; a review, Diabetes. Metab. Syndr. Obes. 3 (2010) 155-163, https://doi.org/10.2147/dmso.s7004.
[67] E. Sun, D. de Fontgalland, P. Rabbitt, P. Hollington, L. Sposato, S. Due, et al., Mechanisms Controlling Glucose-Induced GLP-1 Secretion in Human Small Intestine, Diabetes 66 (2017) 2144-2149, https://doi. Org/10.2337/db17-0058. [68] P. MacDonald, W. El-kholy, M. Riedel, A. Salapatek, P. Light, M. Wheeler, The Multiple Actions of GLP-1 on the Process of Glucose-Stimulated Insulin Secretion, Diabetes 51 (2002) S434-S442, https://doi.org/10.2337/diabetes.51.2007.s434.
[69] D. Hinnen, Glucagon-Like Peptide 1 Receptor Agonists for Type 2 Diabetes, Diabetes Spectr. 30 (2017) 202-210, https://doi.org/10.2337/ds1 6-0026.
[70] J. Holst, Which to choose, an oral or an injectable glucagon-like peptide-1 receptor agonist? Lancet 394 (2019) 4-6, https:///doi. Org/10.1016/s0140-6736 (19)31350-9.
[71] H. Lebovitz, M. Banerji, Non-Insulin Injectable Treatments (Glucagon-Like peptide-1 and Its Analogs) and Cardiovascular Disease, Diabetes. Technol. Ther. 14 (2012), https://doi.org/10.1089/dia.2012.0022. S-43-S-50.
[72] A. Alexopoulos, J. Buse, Initial injectable therapy in type 2 diabetes: Key considerations when choosing between glucagon-like peptide 1 receptor agonists and insulin, Metabolism 98 (2019) 104-111, https://doi.org/10.1016/j. metabol.2019.06.012.
[73] V. Gupta, Glucagon-like peptide-1 analogues: An overview, Indian J. Endocr. Metab. 17 (2013) 413, https://doi.org/10.4103/2230-8210.111625.
[74] B. Manandhar, J. Ahn, Glucagon-like Peptide-1 (GLP-1) Analogs: Recent advances, New Possibilities, and Therapeutic Implications, J. Med. Chem. 58 (2014) 1020-1037, https://doi.org/10.1021/jm500810s.
[75] M. Yu, M. Benjamin, S. Srinivasan, E. Morin, E. Shishatskaya, S. Schwendeman, et al., Battle of GLP-1 delivery technologies, Adv. Drug. Deliv. Rev. 130 (2018) 113-130, https://doi.org/10.1016/j.addr.2018.07.009.
[76] J. Holst, From the Incretin Concept and the Discovery of GLP-1 to Today’s Diabetes Therapy, Front. Endocrinol. 10 (2019), https://doi.org/10.3389/ fendo.2019.00260.
[77] K. Harris, D. McCarty, Efficacy and tolerability of glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes mellitus, Ther. Adv. Endocrinol. Metab. 6 (2015) 3-18, https://doi.org/10.1177/2042018814558242.
[78] E. St Onge, S. Miller, E. Clements, L. Celauro, K. Barnes, The role of glucagon-like peptide-1 receptor agonists in the treatment of type 2 diabetes, J. Transl. Int. Med. 5 (2017) 79-89, https://doi.org/10.1515/jtim-2017-0015.
[79] E. Goncalves, D. Bell, Combination Treatment of SGLT2 Inhibitors and GLP-1 Receptor Agonists: Symbiotic Effects on Metabolism and Cardiorenal Risk, Diabetes Ther. 9 (2018) 919-926, https://doi.org/10.1007/s13300-018-0420-6.
[80] R. DeFronzo, Combination therapy with GLP-1 receptor agonist and SGLT2 inhibitor, Diabetes. Obes. Metab. 19 (2017) 1353-1362, https://doi.org/ 10.1111/dom.12982.
[81] A. Lambeir, C. Durinx, S. Scharpé, I. De Meester, Dipeptidyl-Peptidase IV from Bench to Bedside: An Update on Structural Properties, Functions, and Clinical Aspects of the Enzyme DPP IV, Crit. Rev. Cl. Lab. Sci 40 (2003) 209-294, https:// doi.org/10.1080/713609354.
[82] M. Gorrell, Dipeptidyl peptidase IV and related enzymes in cell biology and liver disorders, Clin. Sci. 108 (2005) 277-292, https://doi.org/10.1042/cs20040302. [83] B. Gallwitz, Clinical Use of DPP-4 Inhibitors, Front. Endocrinol. 10 (2019) 389-398, https://doi.org/10.3389/fendo.2019.00389.
[84] D. Hsia, O. Grove, W. Cefalu, An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus, Curr. Opin. Endocrinol. Diabetes. Obes. 24 (2017) 73-79, https://doi. Org/10.1097/med.0000000000000311.
[85] A. Scheen, Pharmacodynamics, Efficacy and Safety of Sodium-Glucose Co-transporter Type 2 (SGLT2) Inhibitors for the Treatment of Type 2 Diabetes Mellitus, Drugs 75 (2015) 33-59, https://doi.org/10.1007/s40265-014-0337-y.
[86] A. Tentolouris, P. Vlachakis, E. Tzeravini, I. Eleftheriadou, N. Tentolouris, SGLT2 Inhibitors: A Review of Their Antidiabetic and Cardioprotectiveffects, Int. J. Environ. Res. Public. Health 16 (2019) 2965-2991, https://doi.org/10.3390/ ijerph16162965.

[87] S. Kalra, J. Kesavadev, M. Chadha, G. Kumar, Sodium-glucose cotransporter-2 inhibitors in combination with other glucose-lowering agents for the treatment of type 2 diabetes mellitus, Indian J. Endocr. Metab. 22 (2018) 827, https://doi.org/ 10.4103/ijem.ijem_162_17.
[88] S. Rhee, H. Kim, S. Ko, K. Hur, N. Kim, M. Moon, et al., Monotherapy in Patients with Type 2 Diabetes Mellitus, Diabetes. Metab. J. 41 (2017) 349, https://doi. Org/10.4093/dmj.2017.41.5.349.
[89] L. Monnier, H. Lapinski, C. Colette, Contributions of Fasting and Postprandial Plasma Glucose Increments to the Overall Diurnal Hyperglycemia of Type 2 Diabetic Patients: Variations with increasing levels of HbAlc, Diabetes. Care. 26 (2003) 881-885, https://doi.org/10.2337/diacare. 26.3.881.
[90] Z. Bloomgarden, R. Dodis, C. Viscoli, E. Holmboe, S. Inzucchi, Lower Baseline Glycemia Reduces Apparent Oral Agent Glucose-Lowering Efficacy: A meta- regression analysis, Diabetes. Care. 29 (2006) 2137-2139, https://doi.org/ 10.2337/dc06-11 20.
[91] Prof. Dr. Najlaa Saadi, Anti-diabetic Drugs Insulin, Non-Insulin Anti-diabetic Drugs. Philadelphia University. http://www.philadelphia.edu.jo/academic/nsaadi/uploads/Antidiabetic%20Drugs.pdf.

[92] A. Cahn, W. Cefalu, Clinical Considerations for Use of Initial Combination Therapy in Type 2 Diabetes, Diabetes. Care. 39 (2016) S137-S145, https://doi. Org/10.2337/dcs15-3007.
[93] R. Vos, M. van Avendonk, H. Jansen, A. Goudswaard, M. van den Donk, K. Gorter, et al., Insulin monotherapy compared with the addition of oral glucose-lowering agents to insulin for people with type 2 diabetes already on insulin therapy and inadequate glycaemic control, Cochrane Database Syst. Rev. (2016), https://doi. Org/10.1002/14651858.cd006992.pub2.
[94] K. Zhou, L. Donnelly, A. Morris, P. Franks, C. Jennison, C. Palmer, et al., Clinical and Genetic Determinants of Progression of Type 2 Diabetes: A Direct Study, Diabetes Care. 37 (2014) 718-724, https://doi.org/10.2337/dc13-1995.
[95] M. Abdul-Ghani, C. Puckett, C. Triplitt, D. Maggs, J. Adams, E. Cersosimo, et al., Initial combination therapy with metformin, pioglitazone and exenatide is more effective than sequential add-on therapy in subjects with new-onset diabetes. Results from the Efficacy and Durability of Initial Combination Therapy for Type 2 Diabetes (EDICT): a randomized trial, Diabetes. Obes. Metab. 17 (2015) 268-275, https://doi.org/10.1111/dom.12417.
[96] F. Kavvoura, M. Pappa, E. Evangelou, E. Ntzani, The Genetic Architecture of Type-2 Diabetes Pharmacotherapy: The Emerging Genomic Evidence, Curr. Pharm. Des. 20 (2014) 3610-3619, https://doi.org/10.2174/13816128113196660675.
[97] Y. Khazrai, R. Buzzetti, S. Del Prato, A. Cahn, I. Raz, P. Pozzilli, The addition of E (Empowerment and Economics) to the ABCD algorithm in diabetes care, J Diabetes. Complicat. 29 (2015) 599-606, https://doi.org/10.1016/j. jdiacomp.2015.03.004.
[98] Patient Safety and Quality Improvement, Ahrq.Gov., 2020 (accessed 12 August 2020), https://www.ahrq.gov/patient-safety/index.html.
[99] R. DiSanto, V. Subramanian, Z. Gu, Recent advances in nanotechnology for diabetes treatment, Wiley. Interdiscip. Rev. Nanomed. Nanobiotechnol. 7 (2015) 548-564, https://doi.org/10.1002/wnan. 1329.
[100] T. Dash, V. Konkimalla, Poly-c-caprolactone based formulations for drug delivery and tissue engineering: A review, J. Control. Release. 158 (2012) 15-33, https:// doi.org/10.1016/j.jconrel.2011.09.064.
[101] V. Rai, N. Mishra, A. Agrawal, S. Jain, N. Yadav, Novel drug delivery system: an immense hope for diabetics, Drug. Deliv. 23 (2016) 2371-2390, https://doi.org/ 10.3109/10717544.2014.991001.
[102] T. Ozeki, Y. Kano, N. Takahashi, T. Tagami, H. Okada, Improved Bioavailability of a Water-Insoluble Drug by Inhalation of Drug-Containing Maltosyl-p-CyclodextrinMicrospheres Using a Four-Fluid Nozzle Spray Drier, AAPS Pharmscitech. 13 (2012) 1130-1137, https://doi.org/10.1208/s12249-012-9826-z.
[103] S. Cao, S. Xu, H. Wang, Y. Ling, J. Dong, R. Xi, et al., Nanoparticles: Oral Delivery for Protein and Peptide Drugs, AAPS Pharmscitech. 20 (2019) 190, https://doi.org/10.1208/s12249-019-1325-z.
[104] J. Jeevanandam, A. Barhoum, Y. Chan, A. Dufresne, M. Danquah, Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations, Beilstein J. Nanotechnol. 9 (2018) 1050–1074, htps://doi.org/ 10.3762/bjnano.9.98.
[105] J. Reinholz, K. Landfester, V. Mailänder, The challenges of oral drug delivery via nanocarriers, Drug Deliv. 25 (2018) 1694-1705, https://doi. Org/10.1080/ 10717544.2018.1501119.
[106] A. Puri, K. Loomis, B. Smith, J. Lee, A. Yavlovich, E. Heldman, et al., Lipid-Based Nanoparticles as Pharmaceutical Drug Carriers: From Concepts to Clinic, Crit. Rev. Ther. Drug. 26 (2009) 523-580, https://doi.org/10.1615/ critrevtherdrugcarriersyst.v26.i6.1 0.
[107] R. Nisini, N. Poerio, S. Mariotti, F. De Santis, M. Fraziano, The Multirole of Liposomes in Therapy and Prevention of Infectious Diseases, Front Immunol. 9 (2018) 155, https://doi.org/10.3389/fimmu.2018.00155.
[108] A. Pardakhty, E. Moazeni, J. Varshosaz, V. Hajhashemi, A. RouholaminiNajafabadi, Pharmacokinetic study of niosome-loaded insulin in diabetic rats, Daru 19 (2011) 404-411. PMCID: PMC3436076.
[109] Kesharwani, B. Gorain, S. Low, S. Tan, E. Ling, Y. Lim, et al., Nanotechnology based approaches for anti-diabetic drugs delivery, Diabetes. Res. Clin. Pract. 136 (2018) 52-77, https://doi.org/10.1016/j.diabres.2017.11.018.
[110] G. Patel, P. Shelat, A. Lalwani, Statistical modeling, optimization and Characterization of solid self-nanoemulsifying drug delivery system of lopinavir using design of experiment, Drug Deliv. 23 (2016) 3027-3042, https://doi.org/ 10.3109/10717544.2016.1141260.
[111] A. Nasr, A. Gardouh, M. Ghorab, Novel Solid Self-Nanoemulsifying Drug Delivery System (S-SNEDDS) for Oral Delivery of OlmesartanMedoxomil: Design, Formulation, Pharmacokinetic and Bioavailability Evaluation, Pharmaceutics 8 (2016) 20, https://doi.org/10.3390/pharmaceutics8030020.
[112] M. MohdIzham, Y. Hussin, M. Aziz, S. Yeap, H. Rahman, M. Masarudin, et al., Preparation and Characterization of Self Nano-Emulsifying Drug Delivery System Loaded with Citral and Its Antiproliferative Effect on Colorectal Cells In Vitro, Nanomaterials 9 (2019) 1028, https://doi.org/10.3390/nano9071028.
[113] M. Prausnitz, R. Langer, Transdermal drug delivery, Nat. Biotechnol. 26 (2008) 1261-1268, https://doi.org/10.1038/nbt.1504.