[1] Daniil G, Fernandes-Rosa FL, Chemin J, Blesneac I, Beltrand J, Polak M, et al. CACNA1H mutations are associated with different forms of primary aldosteronism. EBioMedicine (2016) 13:225–36. 10.1016/j.ebiom.2016.10.002 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
[2] Wilson RC, Krozowski ZS, Li K, Obeyesekere VR, Razzaghy-Azar M, Harbison MD, et al. A mutation in the HSD11B2 gene in a family with apparent mineralocorticoid excess. J Clin Endocrinol Metab (1995) 80:2263–6. 10.1210/jcem.80.7.7608290 [PubMed] [CrossRef] [Google Scholar]
[3] Simonetti GD, Mohaupt MG, Bianchetti MG. Monogenic forms of hypertension. Eur J Pediatr (2012) 171:1433–9. 10.1007/s00431-011-1440-7 [PubMed] [CrossRef] [Google Scholar]
[4] Morineau G, Sulmont V, Salomon R, Fiquet-Kempf B, Jeunemaître X, Nicod J, et al. Apparent mineralocorticoid excess: report of six new cases and extensive personal experience. J Am Soc Nephrol (2006) 17:3176–84. 10.1681/ASN.2006060570 [PubMed] [CrossRef] [Google Scholar]
[5] Lavery GG, Ronconi V, Draper N, Rabbitt EH, Lyons V, Chapman KE, et al. Late-onset apparent mineralocorticoid excess caused by novel compound heterozygous mutations in the HSD11B2 gene. Hypertension (2003) 42:123–9. 10.1161/01.HYP.0000083340.57063.35 [PubMed] [CrossRef] [Google Scholar]
[6] Geller DS, Farhi A, Pinkerton N, Fradley M, Moritz M, Spitzer A, et al. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science (2000) 289:119–23. 10.1126/science.289.5476.119 [PubMed] [CrossRef] [Google Scholar]
[7] White PC, Curnow KM, Pascoe L. Disorders of steroid 11 beta-hydroxylase isozymes. Endocr Rev (1994) 15:421–38. 10.1210/edrv-15-4-421 [PubMed] [CrossRef] [Google Scholar]
[8] Rossier BC, Schild L. Epithelial sodium channel: Mendelian versus essential hypertension. Hypertension (2008) 52:595–600. 10.1161/HYPERTENSIONAHA.107.097147 [PubMed] [CrossRef] [Google Scholar]
[9] Yang C-L, Zhu X, Wang Z, Subramanya AR, Ellison DH. Mechanisms of WNK1 and WNK4 interaction in the regulation of thiazide-sensitive NaCl cotransport. J Clin Invest (2005) 115:1379–87. 10.1172/JCI22452 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
[10] Kahle KT, Ring AM, Lifton RP. Molecular physiology of the WNK kinases. Annu Rev Physiol (2008) 70:329–55. 10.1146/annurev.physiol.70.113006.100651 [PubMed] [CrossRef] [Google Scholar]
[11] Gordon RD. Syndrome of hypertension and hyperkalemia with normal glomerular filtration rate. Hypertension (1986) 8:93–102. [PubMed] [Google Scholar]
[12] Manning AK, LaValley M, Liu C-T, et al. Meta-analysis of Gene-Environment interaction: joint estimation of SNP and SNP×Environment regression coefficients. Genetic Epidemiology. 2011;35 (1):11–18. doi: 10.1002/gepi.20546. This paper lays the foundation for meta-analytic procedures for genome-wide association studies to investigate gene-environment interactions with a working application in type 2 diabetes research. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
[13] Thomas D. Gene-Environment-Wide Association Studies: Emerging Approaches. Nature reviews Genetics. 2010;11 (4):259–272. doi: 10.1038/nrg2764. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
[14] Cox D. Interaction. International Statistical Review/Revue Internationale De Statistique. 1984;52 (1):1–24. http://www.jstor.org/stable/1403235. [Google Scholar]
[15] Ottman R. An Epidemiologic Approach to Gene-Environment Interaction. Genetic epidemiology. 1990;7 (3):177. doi: 10.1002/gepi.1370070302. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
[16] Hunter DJ. Gene-environment interactions in human diseases. Nat Rev Genet. 2005; 6:287–98. doi: 10.1038/nrg1578. [PubMed] [CrossRef] [Google Scholar]
[17] Engelman CD, Baurley JW, Chiu Y-F, et al. Detecting Gene-Environment Interactions in Genome-Wide Association Data. Genetic Epidemiology. 2009;33(Suppl 1):68–73. doi: 10.1002/gepi.20475. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
[18] Goldman D, Oroszi G, Ducci F. The genetics of addictions: uncovering the genes. Nature Reviews Genetics. 2005; 6:521–532. [PubMed] [Google Scholar]
[19] Dudbridge F, Fletcher O. Gene-Environment Dependence Creates Spurious Gene-Environment Interaction. American Journal of Human Genetics. 2014;95 (3):301–307. doi: 10.1016/j.ajhg.2014.07.014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
[20] GarcÃa-Closas M, Thompson WD, Robins JM. Differential misclassification and the assessment of gene-environment interactions in case-control studies. Am J Epidemiol. 1998; 1475:426–433. [PubMed] [Google Scholar]
[21] Hein R, Beckmann L, Chang-Claude J. Sample size requirements for indirect association studies of gene-environment interactions (G × E) Genet Epidemiol. 2008; 32:235–245. [PubMed] [Google Scholar]
[22] Devlin B, Roeder K. Genomic Control for Association Studies. Biometrics. 1999;55(4):997–1004. doi: 10.1111/j.0006-341X.1999.00997. x. [PubMed] [CrossRef] [Google Scholar]
[23] Ioannidis JP, Trikalinos TA, Khoury MJ. Implications of small effect sizes of individual genetic variants on the design and interpretation of genetic association studies of complex diseases. Am J Epidemiol. 2006; 164:609–614. [PubMed] [Google Scholar]
[24] Becker BJ, Wu M-J. The Synthesis of Regression Slopes in Meta-Analysis. Statistical Science. 2007;22 (3):414–429. doi: 10.1214/07-STS243. http://projecteuclid.org/euclid.ss/1199285041. [CrossRef] [Google Scholar