• editor.aipublications@gmail.com
  • Track Your Paper
  • Contact Us
  • ISSN: 2456-8015

International Journal Of Medical, Pharmacy And Drug Research(IJMPD)

Nanoparticles and their Potential affect as Antimicrobials in dentistry

Ishil Shukur


International Journal of Medical, Pharmacy and Drug Research(IJMPD), Vol-5,issue-3, May - June 2021, Pages 37-46 ,

Download | Downloads : 2 | Total View : 372

Article Info: Silver nanoparticles, Orthodontic brackets, White spot lesion, Dentistry

Share

The aim of the current article is to evaluate the antiadherent and antibacterial properties of surfacemodified different orthodontic brackets with silver nanoparticles against Streptococcus mutans and Streptococcus sobrinus, using radiomarker. To measure the current study, a quantitative method was applied to the adherence of Streptococci to orthodontic brackets, 70 samples of orthodontic brackets were selected and classified in to 10 groups as follow: GVn (Radiance plus-Roth), GVI (InVu-Roth), GVII (SystemAlexanderLTS), GVIII (Gemini-Roth), GIX (NuEdge-Roth), GIIIn (Gemini-Roth), GIVn (NuEdge-Roth), GX (Radiance plus-Roth), GIn (InVu-Roth), and GIIn (SystemAlexanderLTS). The study focused on patients’ gender while considering sample for the present article. To codify and measure the bacterium, a radioactive marker (3 H) was applied. The brackets were then immersed in a radiolabeled solution, and the radiation was measured. The ANOVA test (Sheffè post hoc) was used to calculate the statistical analysis. The findings revealed that there were substantial disparities between the groups. GIIIn was the lowest score for both bacteria, whereas GIX and GVI were the highest for Streptococcus mutans and Streptococcus sobrinus, respectively. In conclusion, the surface of orthodontic brackets can be modified with silver nanoparticles to reduce the accumulation of dental plaque and the development of dental caries during orthodontic treatment.

Silver nanoparticles, Orthodontic brackets, White spot lesion, Dentistry

[1] Al-Ansari, M. M., Al-Dahmash, N. D., & Ranjitsingh, A. J. A. (2021). Synthesis of silver nanoparticles using gum Arabic: Evaluation of its inhibitory action on Streptococcus mutans causing dental caries and endocarditis. Journal of Infection and Public Health, 14(3), 324-330.
[2] Allaker, R. P., & Yuan, Z. (2019). Nanoparticles and the control of oral biofilms. In Nanobiomaterials in clinical dentistry (pp. 243-275). Elsevier.
[3] Amiri, M., Etemadifar, Z., Daneshkazemi, A., & Nateghi, M. (2017). Antimicrobial effect of copper oxide nanoparticles on some oral bacteria and candida species. Journal of dental biomaterials, 4(1), 347.
[4] Anandaradje, A., Meyappan, V., Kumar, I., & Sakthivel, N. (2020). Microbial synthesis of silver nanoparticles and their biological potential. In Nanoparticles in Medicine (pp. 99-133). Springer, Singapore.
[5] Arya, G., Sharma, N., Mankamna, R., & Nimesh, S. (2019). Antimicrobial silver nanoparticles: future of nanomaterials. In Microbial Nanobionics (pp. 89-119). Springer, Cham.
[6] Balhaddad, A. A., Garcia, I. M., Ibrahim, M. S., Rolim, J. P., Gomes, E. A., Martinho, F. C., ... & Melo, M. A. S. (2020). Prospects on Nano-Based Platforms for Antimicrobial Photodynamic Therapy against Oral Biofilms. Photobiomodulation, Photomedicine, and Laser Surgery, 38(8), 481-496.
[7] Bapat, R. A., Chaubal, T. V., Dharmadhikari, S., Abdulla, A. M., Bapat, P., Alexander, A., ... & Kesharwani, P. (2020). Recent advances of gold nanoparticles as biomaterial in dentistry. International journal of pharmaceutics, 119596.
[8] Bapat, R. A., Chaubal, T. V., Joshi, C. P., Bapat, P. R., Choudhury, H., Pandey, M., ... & Kesharwani, P. (2018). An overview of application of silver nanoparticles for biomaterials in dentistry. Materials Science and Engineering: C, 91, 881-898.
[9] Bhushan, J., & Maini, C. (2019). Nanoparticles: A promising novel adjunct for dentistry. Indian Journal of Dental Sciences, 11(3), 167.
[10] Burdușel, A. C., Gherasim, O., Grumezescu, A. M., Mogoantă, L., Ficai, A., & Andronescu, E. (2018). Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials, 8(9), 681.
[11] Butrón Téllez Girón, C., Hernández Sierra, J. F., DeAlba‐Montero, I., Urbano Peña, M. D. L. A., & Ruiz, F. (2020). Therapeutic Use of Silver Nanoparticles in the Prevention and Arrest of Dental Caries. Bioinorganic Chemistry and Applications, 2020.
[12] Chambers, C., Stewart, S. B., Su, B., Jenkinson, H. F., Sandy, J. R., & Ireland, A. J. (2017). Silver doped titanium dioxide nanoparticles as antimicrobial additives to dental polymers. Dental Materials, 33(3), e115-e123.
[13] Chandra, H., Kumari, P., Bontempi, E., & Yadav, S. (2020). Medicinal plants: Treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatalysis and Agricultural Biotechnology, 24, 101518.
[14] Divakar, D. D., Jastaniyah, N. T., Altamimi, H. G., Alnakhli, Y. O., Alkheraif, A. A., & Haleem, S. (2018). Enhanced antimicrobial activity of naturally derived bioactive molecule chitosan conjugated silver nanoparticle against dental implant pathogens. International Journal of biological macromolecules, 108, 790-797.
[15] Enan, E. T., Ashour, A. A., Basha, S., Felemban, N. H., & El-Rab, S. M. G. (2021). Antimicrobial activity of biosynthesized silver nanoparticles, amoxicillin, and glass-ionomer cement against Streptococcus mutans and Staphylococcus aureus. Nanotechnology, 32(21), 215101.
[16] Espinosa-Cristóbal, L. F., Holguín-Meráz, C., Zaragoza-Contreras, E. A., Martínez-Martínez, R. E., Donohue-Cornejo, A., Loyola-Rodríguez, J. P., ... & Reyes-López, S. Y. (2019). Antimicrobial and Substantivity Properties of Silver Nanoparticles against Oral Microbiomes Clinically Isolated from Young and Young-Adult Patients. Journal of Nanomaterials, 2019.
[17] Fathima, J. B., Pugazhendhi, A., & Venis, R. (2017). Synthesis and characterization of ZrO2 nanoparticles-antimicrobial activity and their prospective role in dental care. Microbial pathogenesis, 110, 245-251.
[18] Ferrando-Magraner, E., Bellot-Arcís, C., Paredes-Gallardo, V., Almerich-Silla, J. M., García-Sanz, V., & Fernández-Alonso, M. (2020). Antibacterial properties of nanoparticles in dental restorative materials. A systematic review and meta-analysis. Medicina, 56(2), 55.
[19] Jiao, Y., Tay, F. R., Niu, L. N., & Chen, J. H. (2019). Advancing antimicrobial strategies for managing oral biofilm infections. International journal of oral science, 11(3), 1-11.
[20] Lboutounne, H. (2017). Dental medicine nanosystems: nanoparticles and their use in dentistry and oral health care. Int J Dent Oral Health, 3(10), 145-57.
[21] Lima, R. A., de Souza, S. L. X., Lima, L. A., Batista, A. L. X., de Araújo, J. T. C., Sousa, F. F. O., ... & Bandeira, T. D. J. P. G. (2020). Antimicrobial effect of anacardic acid–loaded zein nanoparticles loaded on Streptococcus mutans biofilms. Brazilian Journal of Microbiology, 51(4), 1623-1630.
[22] Makvandi, P., Gu, J. T., Zare, E. N., Ashtari, B., Moeini, A., Tay, F. R., & Niu, L. N. (2020). Polymeric and inorganic nanoscopical antimicrobial fillers in dentistry. Acta biomaterialia, 101, 69-101.
[23] Makvandi, P., Josic, U., Delfi, M., Pinelli, F., Jahed, V., Kaya, E., ... & Tay, F. R. (2021). Drug delivery (nano) platforms for oral and dental applications: tissue regeneration, infection control, and cancer management. Advanced Science, 8(8), 2004014.
[24] Noori, A. J., & Kareem, F. A. (2019). The effect of magnesium oxide nanoparticles on the antibacterial and antibiofilm properties of glass-ionomer cement. Heliyon, 5(10), e02568.
[25] Noronha, V. T., Paula, A. J., Duran, G., Galembeck, A., Cogo-Mueller, K., Franz-Montan, M., & Duran, N. (2017). Silver nanoparticles in dentistry. Dental Materials, 33(10), 1110-1126.
[26] Parnia, F., Yazdani, J., Javaherzadeh, V., & Dizaj, S. M. (2017). Overview of nanoparticle coating of dental implants for enhanced osseointegration and antimicrobial purposes. Journal of Pharmacy & Pharmaceutical Sciences, 20, 148-160.
[27] Rodrigues, M. C., Rolim, W. R., Viana, M. M., Souza, T. R., Gonçalves, F., Tanaka, C. J., ... & Seabra, A. B. (2020). Biogenic synthesis and antimicrobial activity of silica-coated silver nanoparticles for esthetic dental applications. Journal of dentistry, 96, 103327.
[28] Song, W., & Ge, S. (2019). Application of antimicrobial nanoparticles in dentistry. Molecules, 24(6), 1033.
[29] Sreenivasagan, S., Subramanian, A. K., & Rajeshkumar, S. (2020). Assessment of antimicrobial activity and cytotoxic effect of green mediated silver nanoparticles and its coating onto mini-implants. Annals of Phytomedicine, 9(1), 207-212.
[30] Stewart, C. A., Hong, J. H., Hatton, B. D., & Finer, Y. (2018). Responsive antimicrobial dental adhesive based on drug-silica co-assembled particles. Acta biomaterialia, 76, 283-294.
[31] Takamiya, A. S., Monteiro, D. R., Gorup, L. F., Silva, E. A., de Camargo, E. R., Gomes-Filho, J. E., ... & Barbosa, D. B. (2021). Biocompatible silver nanoparticles incorporated in acrylic resin for dental application inhibit Candida albicans biofilm. Materials Science and Engineering: C, 118, 111341.
[32] Talapko, J., Matijević, T., Juzbašić, M., Antolović-Požgain, A., & Škrlec, I. (2020). Antibacterial Activity of Silver and Its Application in Dentistry, Cardiology and Dermatology. Microorganisms, 8(9), 1400.
[33] Tüzüner, T., Dimkov, A., & Nicholson, J. W. (2019). The effect of antimicrobial additives on the properties of dental glass-ionomer cements: a review. Acta biomaterialia odontologica Scandinavica, 5(1), 9-21.
[34] Vega-Jiménez, A. L., Almaguer-Flores, A., Flores-Castañeda, M., Camps, E., Uribe-Ramírez, M., Aztatzi-Aguilar, O. G., & De Vizcaya-Ruiz, A. (2017). Bismuth subsalicylate nanoparticles with anaerobic antibacterial activity for dental applications. Nanotechnology, 28(43), 435101.
[35] Yin, I. X., Zhang, J., Zhao, I. S., Mei, M. L., Li, Q., & Chu, C. H. (2020). The antibacterial mechanism of silver nanoparticles and its application in dentistry. International journal of nanomedicine, 15, 2555.