• editor.aipublications@gmail.com
  • Track Your Paper
  • Contact Us
  • ISSN: 2456-8015

International Journal Of Medical, Pharmacy And Drug Research(IJMPD)

Immunological Study in Vivo of Synthesis Nanoparticules used in Rheumatoid Arthritis

Abas Matrood Bashi , Kaiser Abdul Alsajjad , Hiyam Abdul Ridha AlAwad

International Journal of Medical, Pharmacy and Drug Research(IJMPD), Vol-2,Issue-1, January - February 2018, Pages 1-13 , 10.22161/ijmpd.2.1.1

Download | Downloads : 5 | Total View : 1074


The synthesis of a nanoparticules used in drug delivery plays an important role in determining its targeting specificity and efficacy in vivo. A conventional approach relies on the surface conjugation of a nano-sized particle with two functionally distinct types of molecules, one as a targeting ligand, and the other as a therapeutic agent to be delivered to the diseased cell. However, an alternative simplified approach can be used, in which a single type of molecule displaying dual function as both a targeting ligand and therapeutic agent is conjugated to the nanoparticle. In this paper, we evaluate the validity of this new strategy by using methotrexate(MTX) and xerogel- methotrexate, (xerogel-MTX), Naproxine(NAP.), xerogel-Naproxine (xerogel-NAP.) the aim in this paper to define the procedures of sample and the applicability of FTIR and AFM and UV-Visb. techniques towards the characterization of the surface details with sub-nanometer resolution in nanoparticles (NPs) modified by MTX. And NAP ligands. To reach this aim, we prepared and analysed xerogel, xerogel-NAP. Xerogel-MTX NPs functionalized on the surface with ligands having different chemical nature and composition and capable to provide to the NPs physical chemical properties required for specific application. We tested the resulted NPs in vivo, using the whit rats animals, engineered with direct against arteries Rheumatology inflammation, proceed the evolution of some immunity parameters during the period of treatments.

xerogel, FTIR, AFM, immunology , nanoparticules

[1] Duncan, R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer 2006, 6 (9), 688−701.
[2] Haag, R.; Kratz, F. Polymer therapeutics: Concepts and applications. Angew. Chem., Int. Ed. 2006, 45 (8), 1198−215.
[3] de Bono, J. S.; Ashworth, A. Translating cancer research into targeted therapeutics. Nature 2010, 467 (7315), 543−9.
[4] Davis, M. E.; Chen, Z.; Shin, D. M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discovery 2008, 7 (9), 771−82.
[5] Mullen, D. G.; Fang, M.; Desai, A.; Baker, J. R.; Orr, B. G.; Holl, M. M. B. A Quantitative Assessment of Nanoparticle-Ligand Distributions: Implications for Targeted Drug and Imaging Delivery in Dendrimer Conjugates. ACS Nano 2010, 4 (2), 657−70.
[6] Quintana, A.; Raczka, E.; Piehler, L.; Lee, I.; Myc, A.; Majoros, I.; Patri, A. K.; Thomas, T.; Mule, J.; Baker, J. R. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm. Res. 2002, 19 (9), 1310−6.
[7] Kukowska-Latallo, J. F.; Candido, K. A.; Cao, Z.; Nigavekar, S. S.; Majoros, I. J.; Thomas, T. P.; Balogh, L. P.; Khan, M. K.; Baker, J. R., Jr. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res. 2005, 65 (12), 5317−24.
[8] Majoros, I. J.; Thomas, T. P.; Mehta, C. B.; Baker, J. R. Poly(amidoamine) dendrimer-based multifunctional engineered nanodevice for cancer therapy. J. Med. Chem. 2005, 48 (19), 5892−9.
[9] Thomas, T. P.; Majoros, I. J.; Kotlyar, A.; Kukowska-Latallo, J. F.; Bielinska, A.; Myc, A.; Baker, J. R., Jr. Targeting and inhibition of cell growth by an engineered dendritic nanodevice. J. Med. Chem. 2005, 48 (10), 3729−35.
[10] Majoros, I. J.; Williams, C. R.; Becker, A.; Baker, J. R., Jr. Methotrexate delivery via folate targeted dendrimer-based nanotherapeutic platform. Wiley Interdiscip. Rev.: Nanomed. anobiotechnol. 2009, 1 (5), 502−10.
[11] Gillies, E. R.; Frechet, J. M. J. Dendrimers and dendritic polymers in drug delivery. Drug Discovery Today 2005, 10 (1), 35−43.
[12] Lim, P.B., J. Wang, J., Ng, S. C., Chew, C. H., and M. Gan, L., “A bicontinuous microemulsion route to zinc oxide powder,” Ceramics International, 1998, vol. 24, no. 3, pp. 205–209.
[13] M. Inoguchi, Suzuki, M.K., Kageyama, Takagi, K.H., and Sakabe, Y., “Monodispersed and well-crystallized zinc oxide nanoparticles fabricated by microemulsion method,” Journal of the American Ceramic Society, 2008, vol. 91, no. 12, pp. 3850–3855.
[14] Hingorani, Pillai, Kumar, S.V.P., Multani,M. S. and Shah, D. O., “Microemulsion mediated synthesis of zinc-oxide nanoparticles for varistor studies,” Materials Research Bulletin, 1993, vol. 28, no. 12, pp. 1303–1310.
[15] Christensen FM, Johnston HJ, Stone V, Aitken RJ, Hankin S, Peters S, et al. Nano-silver e feasibility and challenges for human health risk assessment based on open literature. Nanotoxicology 2010;4:284e95.
[16] Stensberg MC, Wei Q, McLamore ES, Porterfield DM, Wei A, Sepulveda MS. Toxicological studies on silver nanoparticles: challenges and opportunities in assessment, monitoring and imaging. Nanomedicine 2011;6:879e98.
[17] Pronk MEJ, Wijnhoven SWP, Bleeker EAJ, Heugens EHW, Peijnenburg WJGM, Luttik R, et al. Nanomaterials under REACH. Nanosilver as a case study. Bilthoven, The Netherlands: RIVM.report601780003.Availablefrom:http://www.rivm.nl/bibliotheek/rapporten/601780003.html; 2009.
[18] De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJAM, Geertsma RE. Particle size dependent organ distribution of gold nanoparticles after intervenous administration. Biomaterials 2008;29:1912e9.
[19] Lankveld DP, Oomen AG, Krystek P, Neigh A, Troost-de Jong A, Noorlander CW, et al. The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials 2010;31:8350e61.
[20] Lankveld DPK, Rayavarapu RG, Krystek P, Oomen AG, Verharen HW, Van Leeuwen TG, et al. Blood clearance and tissue distribution of PEGylated and non-PEGylated gold nanorods after intravenous administration in rats. Nanomedicine 2011;6:339 e49.
[21] A. FULIAŞ, C. POPOIU, G. VLASE, T. VLASE, D. ONEŢIU, G. SĂVOIU, SIMU, C. PĂTRUŢESCU, GHEORGHE ILIA , I. LEDEŢI University of Medicine and Pharmacy “Victor Babeş”, Faculty of Digest J. Nanomater. and Biostruct. 2014, 9, 1, 93 – 98.
[22] Vilella A, Tosi G, Grabrucker AM, Ruozi B, Belletti D, et al. Insight on the fate of CNS-targeted nanoparticles. Part I: Rab5-dependent cell-specific uptake and distribution. J Control Release , 2014, 174: 195-201.
[23] Tosi G, Vilella A, Chhabra R, Schmeisser MJ, Boeckers TM, et al. Insight on the fate of CNS-targeted nanoparticles. Part II: Intercellular neuronal cell-to-cell transportJ Control Release, 1997, 177, (2014), 96-107.
[24] Van Meurs JBJ, van Lent PLEM, Singer II, Bayne EK, van de Loo FAJ, van den Berg WB. (1998). lnterleukin-1 receptor antagonist prevents expression of the metalloproteinase-generated neoepitope VDIPEN in antigeninduced arthritis. Arthritis Rheum; 41:647-656.
[25] Zhu, L.; Wei, W.; Zheng, Y. Q. and Jia, X.Y.(2005). Effects and mechanisms of total glucosides of paeony on joint damage in rat collagen-induced arthritis. Inflammation Research. 54 (5), 211-20.
[26] Adkar, P. P. ; Dongare,A.; Ambavade S. D, & Bhaskar, V. H. (2014). Effect of Trapa bispinosa on HDAC Level in Animal Tissues for its Anti-arthritic Activity. Research Journal of Pharmaceutical, Biological and Chemical Sciences ; 5 (4) : 1409 - 1412.
[27] Thiyagarajan, V.; P. Muthusamy, N.;Jayshree, R. & Vijaya, B.(2015). Evaluation of Anti-arthritic potential of Adansonia digitata seed extract. International Journal of Multidisciplinary Research and Development; 2(4): 548-554.
[28] Daniel, C.; McGillicuddy, K. H. Shah; Ryan P.; Larry A. and Jonathan A.(2007) How sensitive is the synovial fluid white blood cell count in diagnosing septic arthritis? The American Journal of Emergency Medicine; 25(7): 749-752.
[29] Mohanan, D. ; Slutter, B.; Henriksen-Lacey, M. ; Jiskoot, W. ; Bouwstra, J.A. ; Perrie, Y.; Kundig, T.M.; Gander, B. & Johansen, P. (2010).Administration routes affect the quality of immune responses: A crosssectional evaluation of particulate antigen-delivery systems. J Control Release.; 147 : 342 - 349 .
[30] Liu , Y.; Jiao, F.; Qiu, Y.; Li, W.; Lao, F.; Zhou, G. ; Sun, B.; Xing, G. ; Dong, J. ;Zhao, Y.; Chai, Z.& Chen, C. (2009) .The effect of Gd@C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-alpha mediated cellular immunity. Biomaterials; 30 : 3934 - 3945 .
[31] Tan, Y. ; Li, S. ; Pitt, B. R.& Huang, L. (1999) .The inhibitory role of CpG immunostimulatory motifs in cationic lipid vector-mediated transgene expression in vivo. Hum. Gene The.r.; 10: 2153-2161.
[32] Sharma, A.& Arora, S. (2012 ). Formulation and In Vitro evaluation of ufasomes for dermal administration of methotrexate. ISRN Pharmaceutics; 12: 174-182 .
[33] Grund , S. ; Bauer , M. & Fischer , D. (2011).Polymers in Drug Delivery-State of the Art and Future Trends. Adv. Eng. Mater., 13: 61-87.
[34] Roy , K. ; Kanwar, R. K. & Kanwar, J. R. (2015). Molecular targets in arthritis and recent trends in nanotherapy. International Journal of Nanomedicine ;10 :5407-5420.
[35] Wani, U. ; Rashid , M. ; Kumar, M. ; Chaudhary, S. ; Kumar, P.& Mishra, N.(2014).Trgeting Aspects Of Nanogel. International Journal Of Pharmaceutical And Nanotechnology ; 7(4) : 2612-2631.
[36] Rohr MK, Mikuls TR, Cohen SB, Thorne CJ, O’Dell JR. The underuse of methotrexate in the treatment of RA: a national analysis of prescribing practices in the U.S. Arthritis Care Res (Hoboken). Epub2016 Nov 18.)
[37] Yang X, Chang Y, Wei W. Endothelial dysfunction and inflammation:immunity in rheumatoid arthritis. Mediators Inflamm. 2016;2016:6813016.)
[38] Voloshyna I, Seshadri S, Anwar K, Littlefield MJ, Belilos E, Carsons SE, et al.Infliximab reverses suppression of cholesterol efflux proteins by TNF-α: apossible mechanism for modulation of atherogenesis. Biomed Res Int.2014;2014:8.)
[39] Reiss AB, Carsons SE, Anwar K, Rao S, Edelman SD, Zhang H, et al. Atheroprotective effects of methotrexate on reverse cholesterol transport proteins and foam cell transformation in human THP-1 monocyte/ macrophages. Arthritis Rheum. 2008;58(12):3675–83.
[40] (Ronda N, Greco D, Adorni MP, Zimetti F, Favari E, Hjeltnes G, et al. Newly identified anti atherosclerotic activity of methotrexate and adalimumab:complementary effects on lipoprotein function and macrophage cholesterol metabolism. Arthritis Rheumatol. 2015;67(5):1155–64.)
[41] Ohya N, Yamada H, Hama N, Kikukawa T, Ichikawa Y.Methotrexate inhibits IL-6 and matrix metalloproteinase-2production by mixed synoviocytes from patients with rheumatoid arthritis. Arthritis Rheum 1999;42:S196.
[42] Fagerli KM et al., The role of methotrexate co-medication inTNF-inhibitor treatment in patients with psoriaticarthritis: results from 440 patients included in the NOR-DMARD study. Ann Rheum Dis 2014;73:132–137.
[43] Olsen, N. J., Spurlock, C. F. &Aune, T. M. Methotrexate induces production of IL-1 and IL-6 in the monocytic cell line U937. Arthritis. Res. Ther. 16, R17(2014).
[44] Rafael Segal, Michael Yaron, and Boris Tartakovsky. Methotrexate: Mechanism of Action in Rheumatoid Arthritis. Seminars in Arthritis and Rheumafism, Vol20, No 3 (December), 1990: pp 190- 199.
[45] Ounissi-Benkalha et al.,In vitro effects of 2 anti rheumatic drugs on the synthesis and expression of proinflammatory cytokines in synovial membranes from patients with rheumatoid arthritis.J Rheumatol. 1996 Jan;23(1):16-23.
[46] Eijsbouts et al., Effects of naproxen and sulphasalazine or methotrexate on hypothalamic-pituitary-adrenal axis activity in patients with rheumatoid arthritis. Clinical and Experimental Rheumatology 2011; 29: 35-42.
[47] Martin Conda-Sheridan et al., Esterase -Activated Release of Naproxen from Supramolecular Nanofibres. ChemCommun (Camb). 2014 November 18; 50(89): 13757–13760.
[48] Clinton F. Stewart et al., Coadministration of naproxen andlow-dose methotrexate in patients withrheumatoid arthritis. CLIN PHARIVIACOL THER 1990;47:540-6.