• editor.aipublications@gmail.com
  • Track Your Paper
  • Contact Us
  • ISSN: 2456-8015

International Journal Of Medical, Pharmacy And Drug Research(IJMPD)

Application of Machine Learning in Drug Discovery and Development Lifecycle

Geerisha Jain


International Journal of Medical, Pharmacy and Drug Research(IJMPD), Vol-6,Issue-6, November - December 2022, Pages 16-35 , 10.22161/ijmpd.6.6.4

Download | Downloads : 15 | Total View : 761

Article Info: Received: 11 Oct 2022; Received in revised form: 11 Oct 2022; Accepted: 15 Nov 2022; Available online: 20 Nov 2022

Share

Machine learning and Artificial Intelligence have significantly advanced in recent years owing to their potential to considerably increase the quality of life while reducing human workload. The paper demonstrates how AI and ML are used in the drug development process to shorten and enhance the overall timeline. It contains pertinent information on a variety of Machine Learning approaches and algorithms that are used across the whole drug development process to speed up research, save expenses, and reduce risks related to clinical trials. A range of QSAR analysis, hit finding, and de novo drug design applications are used in the pharmaceutical industry to enhance decision-making. As technologies like high-throughput screening and computation analysis of databases used for lead and target identification and development create and integrate vast volumes of data, machine learning and deep learning have grown in importance. It has also been emphasized how these cognitive models and tools may be used in lead creation, optimization, and thorough virtual screening. In this paper, problem statements and the corresponding state-of-the-art models have been considered for target validation, prognostic biomarkers, and digital pathology. Machine Learning models play a vital role in the various operations related to clinical trials embracing protocol optimization, participant management, data analysis and storage, clinical trial data verification, and surveillance. Post-development drug monitoring and unique industrially prevalent ML applications of pharmacovigilance have also been discussed. As a result, the goal of this study is to investigate the machine learning and deep learning algorithms utilised across the drug development lifecycle as well as the supporting techniques that have the potential to be useful.

Machine Learning, Artificial Intelligence, Drug Discovery, Drug Development, Pharmacovigilance

[1] Burbidge, R., Trotter, M.W.B., Buxton, B.F. & Holden, S. (2001) Drug design by machine learning: Support vector machines for pharmaceutical data analysis. Computers and Chemistry, 26, 5–14 [DOI: 10.1016/s0097-8485(01)00094-8] [PubMed: 11765851].
[2] Olivier, Blondel, Mathieu, Prettenhofer, Peter, Weiss, Ron, Dubourg, Vincent, Vanderplas, Jake, Passos, Alexandre, Cournapeau, David, Brucher, Matthieu, Perrot, Matthieu, Duchesnay, Edouard, Louppe & Gilles (2012). Scikit-learn: Machine Learning in Python Pedregosa, Fabian & Varoquaux, Gael & Gramfort. Journal of Machine Learning Research. Alexandre & Michel: Vincent & Thirion: Bertrand, USA, 12.
[3] Domingos, P. (2012) A few useful things to know about machine learning. Communications of the ACM, 55, 78–87 [DOI: 10.1145/2347736.2347755].
[4] Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., Li, B., Madabhushi, A., Shah, P., Spitzer, M. & Zhao, S. (2019) Applications of machine learning in drug discovery and development. Nature Reviews. Drug Discovery, 18, 463–477 [DOI: 10.1038/s41573-019-0024-5] [PubMed: 30976107] [PubMed Central: PMC6552674].
[5] Fakhraei, S., Huang, B., Raschid, L. & Getoor, L. (2014) Network-based drug-target interaction prediction with probabilistic soft logic. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 11, 775–787 [DOI: 10.1109/TCBB.2014.2325031] [PubMed: 26356852].
[6] Bolton, E.E., Wang, Y., Thiessen, P.A. & Bryant, S.H. (2008) PubChem: Integrated platform of small molecules and biological activities. Annual Reports in Computational Chemistry, 4, 217–241 [DOI: 10.1016/S1574-1400(08)00012-1].
[7] Xia, Z., Wu, L.Y., Zhou, X. & Wong, S.T. (2010) Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Systems Biology. BioMed Central, 4 (Supplement 2), S6 [DOI: 10.1186/1752-0509-4-S2-S6] [PubMed: 20840733].
[8] Keiser, M.J., Roth, B.L., Armbruster, B.N., Ernsberger, P., Irwin, J.J. & Shoichet, B.K. (2007) Relating protein pharmacology by ligand chemistry. Nature Biotechnology, 25, 197–206 [DOI: 10.1038/nbt1284] [PubMed: 17287757].
[9] Keiser, M.J., Setola, V., Irwin, J.J., Laggner, C., Abbas, A.I., Hufeisen, S.J., Jensen, N.H., Kuijer, M.B., Matos, R.C., Tran, T.B., Whaley, R., Glennon, R.A., Hert, J., Thomas, K.L., Edwards, D.D., Shoichet, B.K. & Roth, B.L. (2009) Predicting new molecular targets for known drugs. Nature, 462, 175–181 [DOI: 10.1038/nature08506]. Epub 1 November 2009 [PubMed: 19881490] [PubMed Central: PMC2784146].
[10] Cheng, A.C., Coleman, R.G., Smyth, K.T., Cao, Q., Soulard, P., Caffrey, D.R., Salzberg, A.C. & Huang, E.S. (2007) Structure-based maximal affinity model predicts small-molecule druggability. Nature Biotechnology, 25, 71–75 [DOI: 10.1038/nbt1273] [PubMed: 17211405].
[11] Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S. & Olson, A.J. (2009) Autodock4 and autodocktools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30, 2785–2791 [DOI: 10.1002/jcc.21256] [PubMed: 19399780].
[12] Mousavian, Z. & Masoudi-Nejad, A. (2014) Drug–target interaction prediction via chemogenomic space: Learning-based methods. Expert Opinion on Drug Metabolism and Toxicology, 10, 1273–1287 [DOI: 10.1517/17425255.2014.950222] [PubMed: 25112457].
[13] Ding, H., Takigawa, I., Mamitsuka, H. & Zhu, S. (2014) Similarity-based machine learning methods for predicting drug–target interactions: A brief review. Briefings in Bioinformatics, 15, 734–747 [DOI: 10.1093/bib/bbt056] [PubMed: 23933754].
[14] Bleakley, K. & Yamanishi, Y. (2009) Supervised prediction of drug–target interactions using bipartite local models. Bioinformatics, 25, 2397–2403 [DOI: 10.1093/bioinformatics/btp433] [PubMed: 19605421].
[15] Alaimo, S., Giugno, R. & Pulvirenti, A. (2016). Recommendation Techniques for Drug–Target Interaction Prediction and Drug Repositioning. Data Mining Techniques for the Life Sciences, 441–462.
[16] Wen, M., Zhang, Z., Niu, S., Sha, H., Yang, R., Yun, Y. & Lu, H. (2017) Deep-learning-based drug-target interaction prediction. Journal of Proteome Research, 16, 1401–1409 [DOI: 10.1021/acs.jproteome.6b00618] [PubMed: 28264154].
[17] Bolton, E.E., Wang, Y., Thiessen, P.A. & Bryant, S.H. (2008) PubChem: Integrated platform of small molecules and biological activities. Annual Reports in Computational Chemistry, 4, 217–241 [DOI: 10.1016/S1574-1400(08)00012-1].
[18] Cristianini, N. & Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press: Cambridge.
[19] Yu, H., Chen, J., Xu, X., Li, Y., Zhao, H., Fang, Y., Li, X., Zhou, W., Wang, W. & Wang, Y. (2012) A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data. PLOS ONE, 7, e37608 [DOI: 10.1371/journal.pone.0037608] [PubMed: 22666371].
[20] Anagaw, A. & Chang, Y.-L. (2019) A new complement naïve Bayesian approach for biomedical data classification. Journal of Ambient Intelligence and Humanized Computing, 10, 3889–3897 [DOI: 10.1007/s12652-018-1160-1].
[21] Nigsch, F., Bender, A., Jenkins, J.L. & Mitchell, J.B.O. (2008) Ligand-target prediction using winnow and naïve Bayesian algorithms and the implications of overall performance statistics. Journal of Chemical Information and Modeling, 48, 2313–2325 [DOI: 10.1021/ci800079x] [PubMed: 19055411].
[22] Pang, X., Fu, W., Wang, J., Kang, D., Xu, L., Zhao, Y., Liu, A.L. & Du, G.H. (2018) Identification of estrogen receptor α antagonists from natural products via in vitro and in silico approaches. Oxidative Medicine and Cellular Longevity, 2018, 6040149 [DOI: 10.1155/2018/6040149] [PubMed: 29861831].
[23] Wei, Y., Li, W., Du, T., Hong, Z. & Lin, J. (2019) Targeting HIV/HCV coinfection using a machine learning-based multiple quantitative structure–activity relationships (multiple QSAR) method. International Journal of Molecular Sciences, 20, 3572 [DOI: 10.3390/ijms20143572] [PubMed: 31336592].
[24] Lengauer, T. (2007) Bioinformatics—From genomes to therapies. Bioinformatics‐ from Genomes to Therapies, 1–24.
[25] Nayal, M. & Honig, B. (2006) On the nature of cavities on protein surfaces: Application to the identification of drug-binding sites. Proteins, 63, 892–906 [DOI: 10.1002/prot.20897] [PubMed: 16477622]
[26] Li, Q. & Lai, L. (2007) Prediction of potential drug targets based on simple sequence properties. BMC Bioinformatics, 8, 353 [DOI: 10.1186/1471-2105-8-353] [PubMed: 17883836].
[27] Bakheet, T.M. & Doig, A.J. (2009) Properties and identification of human protein drug targets. Bioinformatics, 25, 451–457 [DOI: 10.1093/bioinformatics/btp002] [PubMed: 19164304].
[28] Wang, Q., Feng, Y., Huang, J., Wang, T. & Cheng, G. (2017) A novel framework for the identification of drug target proteins: Combining stacked auto-encoders with a biased support vector machine. PLOS ONE, 12, e0176486 [DOI: 10.1371/journal.pone.0176486] [PubMed: 28453576].
[29] Jeon, J., Nim, S., Teyra, J., Datti, A., Wrana, J.L., Sidhu, S.S., Moffat, J. & Kim, P.M. (2014) A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening. Genome Medicine, 6, 57 [DOI: 10.1186/s13073-014-0057-7] [PubMed: 25165489].
[30] Costa, P.R., Acencio, M.L. & Lemke, N. (2010) A machine learning approach for genome-wide prediction of morbid and druggable human genes based on systems-level data. BMC Genomics, 11 (Supplement 5), S9–S9 [DOI: 10.1186/1471-2164-11-S5-S9] [PubMed: 21210975].
[31] Kandoi, G., Acencio, M.L. & Lemke, N. (2015) Prediction of druggable proteins using machine learning and systems biology: A mini-review. Frontiers in Physiology, 6, 366–366 [DOI: 10.3389/fphys.2015.00366] [PubMed: 26696900].
[32] Rouillard, A.D., Hurle, M.R. & Agarwal, P. (2018) Systematic interrogation of diverse Omic data reveals interpretable, robust, and generalizable transcriptomic features of clinically successful therapeutic targets. PLOS Computational Biology, 14, e1006142 [DOI: 10.1371/journal.pcbi.1006142] [PubMed: 29782487].
[33] Kumar, V., Sanseau, P., Simola, D.F., Hurle, M.R. & Agarwal, P. (2016) Systematic analysis of drug targets confirms expression in disease-relevant tissues. Scientific Reports, 6, 36205 [DOI: 10.1038/srep36205] [PubMed: 27824084].
[34] Ferrero, E., Dunham, I. & Sanseau, P. (2017) In silico prediction of novel therapeutic targets using gene-disease association data. Journal of Translational Medicine, 15, 182 [DOI: 10.1186/s12967-017-1285-6] [PubMed: 28851378].
[35] Koscielny, G., An, P., Carvalho-Silva, D., Cham, J.A., Fumis, L., Gasparyan, R., Hasan, S., Karamanis, N., Maguire, M., Papa, E., Pierleoni, A., Pignatelli, M., Platt, T., Rowland, F., Wankar, P., Bento, A.P., Burdett, T., Fabregat, A., Forbes, S., Gaulton, A., Gonzalez, C.Y., Hermjakob, H., Hersey, A., Jupe, S., Kafkas, Ş, Keays, M., Leroy, C., Lopez, F.J., Magarinos, M.P., Malone, J., McEntyre, J., Munoz-Pomer Fuentes, A., O’Donovan, C., Papatheodorou, I., Parkinson, H., Palka, B., Paschall, J., Petryszak, R., Pratanwanich, N., Sarntivijal, S., Saunders, G., Sidiropoulos, K., Smith, T., Sondka, Z., Stegle, O., Tang, Y.A., Turner, E., Vaughan, B., Vrousgou, O., Watkins, X., Martin, M.J., Sanseau, P., Vamathevan, J., Birney, E., Barrett, J. & Dunham, I. (2017) Open targets: A platform for therapeutic target identification and validation. Nucleic Acids Research, 45, D985–D994 [DOI: 10.1093/nar/gkw1055] [PubMed: 27899665].
[36] Ramsundar, B., Liu, B., Wu, Z., Verras, A., Tudor, M., Sheridan, R.P. & Pande, V. (2017) Is multitask deep learning practical for pharma? Journal of Chemical Information and Modeling, 57, 2068–2076 [DOI: 10.1021/acs.jcim.7b00146] [PubMed: 28692267].
[37] Ma, J., Sheridan, R.P., Liaw, A., Dahl, G.E. & Svetnik, V. (2015) Deep neural nets as a method for quantitative structure–activity relationships. Journal of Chemical Information and Modeling, 55, 263–274 [DOI: 10.1021/ci500747n] [PubMed: 25635324].
[38] Barati Farimani, A., Feinberg, E. & Pande, V. (2018) Binding pathway of opiates to μ-opioid receptors revealed by machine learning. Biophysical Journal, 114, 62a–63a [DOI: 10.1016/j.bpj.2017.11.390].
[39] Wu, Z., Ramsundar, B., Feinberg, E.N., Gomes, J., Geniesse, C., Pappu, A.S., Leswing, K. & Pande, V. (2018) MoleculeNet: A benchmark for molecular machine learning. Chemical Science, 9, 513–530 [DOI: 10.1039/c7sc02664a] [PubMed: 29629118].
[40] Segler, M.H.S., Preuss, M. & Waller, M.P. (2018) Planning chemical syntheses with deep neural networks and symbolic AI. Nature, 555, 604–610 [DOI: 10.1038/nature25978] [PubMed: 29595767].
[41] Desai, B., Dixon, K., Farrant, E., Feng, Q., Gibson, K.R., van Hoorn, W.P., Mills, J., Morgan, T., Parry, D.M., Ramjee, M.K., Selway, C.N., Tarver, G.J., Whitlock, G. & Wright, A.G. (2013) Rapid discovery of a novel series of abl kinase inhibitors by application of an integrated microfluidic synthesis and screening platform. Journal of Medicinal Chemistry, 56, 3033–3047 [DOI: 10.1021/jm400099d] [PubMed: 23441572].
[42] Hartenfeller, M. & Schneider, G. (2011) De novo drug design. In: Chemoinformatics and computational chemical biology. Methods in Molecular Biology. Springer: Berlin, 672, 299–323 [DOI: 10.1007/978-1-60761-839-3_12] [PubMed: 20838974].
[43] Schneider, G., Funatsu, K., Okuno, Y. & Winkler, D. (2017) De novo drug design-ye olde scoring problem revisited. Molecular Informatics, 36, 1681031 [DOI: 10.1002/minf.201681031] [PubMed: 28124833].
[44] Mullard, A. (2017) The drug-maker’s guide to the galaxy. Nature, 549, 445–447 [DOI: 10.1038/549445a].
[45] Kadurin, A., Aliper, A., Kazennov, A., Mamoshina, P., Vanhaelen, Q., Khrabrov, K. & Zhavoronkov, A. (2017) The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology. Oncotarget, 8, 10883–10890 [DOI: 10.18632/oncotarget.14073] [PubMed: 28029644].
[46] Olivecrona, M., Blaschke, T., Engkvist, O. & Chen, H. (2017) Molecular de-novo design through deep reinforcement learning. Journal of Cheminformatics, 9, 48 [DOI: 10.1186/s13321-017-0235-x] [PubMed: 29086083].
[47] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S. & Hassabis, D. (2015) Human-level control through deep reinforcement learning. Nature, 518, 529–533 [DOI: 10.1038/nature14236] [PubMed: 25719670].
[48] Gómez-Bombarelli, R., Wei, J.N., Duvenaud, D., Hernández-Lobato, J.M., Sánchez-Lengeling, B., Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T.D., Adams, R.P. & Aspuru-Guzik, A. (2018) Automatic chemical design using a data-driven continuous representation of molecules. ACS Central Science, 4, 268–276 [DOI: 10.1021/acscentsci.7b00572] [PubMed: 29532027].
[49] Kadurin, A., Aliper, A., Kazennov, A., Mamoshina, P., Vanhaelen, Q., Khrabrov, K. & Zhavoronkov, A. (2017) The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology. Oncotarget, 8, 10883–10890 [DOI: 10.18632/oncotarget.14073] [PubMed: 28029644].
[50] Coley, C.W., Rogers, L., Green, W.H. & Jensen, K.F. (2018) Scscore: Synthetic complexity learned from a reaction corpus. Journal of Chemical Information and Modeling, 58, 252–261 [DOI: 10.1021/acs.jcim.7b00622] [PubMed: 29309147].
[51] Andras, P. (2018) High-dimensional function approximation with neural networks for large volumes of data. IEEE Transactions on Neural Networks and Learning Systems, 29, 500–508 [DOI: 10.1109/TNNLS.2017.2651985] [PubMed: 28129193].
[52] Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., Li, B., Madabhushi, A., Shah, P., Spitzer, M. & Zhao, S. (2019) Applications of machine learning in drug discovery and development. Nature Reviews. Drug Discovery, 18, 463–477. Gale Academic OneFile accessed 2 October, 2022 [DOI: 10.1038/s41573-019-0024-5] [PubMed: 30976107].
[53] Lusci, A., Pollastri, G. & Baldi, P. (2013) Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules. Journal of Chemical Information and Modeling, 53, 1563–1575 [DOI: 10.1021/ci400187y] [PubMed: 23795551].
[54] Duvenaud, D.K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-Guzik, A. & Adams, R.P. (2015) Convolutional networks on graphs for learning molecular fingerprints. In: Advances in Neural Information Processing Systems 28 (edited by C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama & R. Garnett). Curran Associates, Inc, (2224–2232).
[55] Coley, C.W., Barzilay, R., Green, W.H., Jaakkola, T.S. & Jensen, K.F. (2017) Convolutional embedding of attributed molecular graphs for physical property prediction. Journal of Chemical Information and Modeling, 57, 1757–1772 [DOI: 10.1021/acs.jcim.6b00601] [PubMed: 28696688].
[56] Artursson, P. & Karlsson, J. (1991) Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (caco-2) cells. Biochemical and Biophysical Research Communications, 175, 880–885 [DOI: 10.1016/0006-291x(91)91647-u] [PubMed: 1673839].
[57] Hubatsch, I., Ragnarsson, E.G.E. & Artursson, P. (2007) Determination of drug permeability and prediction of drug absorption in caco-2 monolayers. Nature Protocols, 2, 2111–2119 [DOI: 10.1038/nprot.2007.303] [PubMed: 17853866].
[58] Wang, N.N., Dong, J., Deng, Y.H., Zhu, M.F., Wen, M., Yao, Z.J., Lu, A.P., Wang, J.B. & Cao, D.S. (2016) Adme properties evaluation in drug discovery: Prediction of caco-2 cell permeability using a combination of nsga-ii and boosting. Journal of Chemical Information and Modeling, 56, 763–773 [DOI: 10.1021/acs.jcim.5b00642] [PubMed: 27018227].
[59] Tian, S., Li, Y., Wang, J., Zhang, J. & Hou, T. (2011) Adme evaluation in drug discovery. 9. prediction of oral bioavailability in humans based on molecular properties and structural fingerprints. Molecular Pharmaceutics, 8, 841–851 [DOI: 10.1021/mp100444g] [PubMed: 21548635].
[60] Sim, D.S.M. (2015) Drug distribution. In: Pharmacological Basis of Acute Care. Springer: Berlin, pp. 27–36.
[61] Lombardo, F. & Jing, Y. (2016) In silico prediction of vol of distribution in humans. extensive data set and the exploration of linear and nonlinear methods coupled with molecular interaction fields descriptors. Journal of Chemical Information and Modeling, 56, 2042–2052 [DOI: 10.1021/acs.jcim.6b00044] [PubMed: 27602694].
[62] Matlock, M.K., Hughes, T.B. & Swamidass, S.J. (2015) Xenosite server: A web-available site of metabolism prediction tool. Bioinformatics, 31, 1136–1137 [DOI: 10.1093/bioinformatics/btu761] [PubMed: 25411327].
[63] Zaretzki, J., Matlock, M. & Swamidass, S.J. (2013) Xenosite: Accurately predicting cyp-mediated sites of metabolism with neural networks. Journal of Chemical Information and Modeling, 53, 3373–3383 [DOI: 10.1021/ci400518g] [PubMed: 24224933].
[64] Dang, N.L., Hughes, T.B., Krishnamurthy, V. & Swamidass, S.J. (2016) A simple model predicts ugt-mediated metabolism. Bioinformatics, 32, 3183–3189 [DOI: 10.1093/bioinformatics/btw350] [PubMed: 27324196].
[65] Lombardo, F., Obach, R.S., Varma, M.V., Stringer, R. & Berellini, G. (2014) Clearance mechanism assignment and total clearance prediction in human based upon in silico models. Journal of Medicinal Chemistry, 57, 4397–4405 [DOI: 10.1021/jm500436v] [PubMed: 24773013].
[66] Guengerich, F.P. (2011) Mechanisms of drug toxicity and relevance to pharmaceutical development. Drug Metabolism and Pharmacokinetics, p 1010210090, 26, 3–14 [DOI: 10.2133/dmpk.dmpk-10-rv-062] [PubMed: 20978361].
[67] Xu, Y., Pei, J. & Lai, L. (2017) Deep learning based regression and multiclass models for acute oral toxicity prediction with automatic chemical feature extraction. Journal of Chemical Information and Modeling, 57, 2672–2685 [DOI: 10.1021/acs.jcim.7b00244] [PubMed: 29019671].
[68] Sushko, I., Salmina, E., Potemkin, V.A., Poda, G. & Tetko, I.V. (2012) Toxalerts: A web server of structural alerts for toxic chemicals and compounds with potential adverse reactions. Journal of Chemical Information and Modeling, 52, 2310–2316 [DOI: 10.1021/ci300245q] [PubMed: 22876798].
[69] Mayr, A., Klambauer, G., Unterthiner, T. & Hochreiter, S. (2016) Deeptox: Toxicity prediction using deep learning. Frontiers in Environmental Science, 3, 80 [DOI: 10.3389/fenvs.2015.00080].
[70] Kearnes, S., Goldman, B. & Pande, V. (2016). Modeling Industrial ADMET Data with Multitask Networks. arXiv:1606.08793 [DOI: 10.48550/arXiv.1606.08793]
[71] Li, B., Shin, H., Gulbekyan, G., Pustovalova, O., Nikolsky, Y., Hope, A., Bessarabova, M., Schu, M., Kolpakova-Hart, E., Merberg, D., Dorner, A. & Trepicchio, W.L. (2015) Development of a drug-response modeling framework to identify cell line derived translational biomarkers that can predict treatment outcome to erlotinib or sorafenib. PLOS ONE, 10, e0130700 [DOI: 10.1371/journal.pone.0130700] [PubMed: 26107615].
[72] van Gool, A.J., Bietrix, F., Caldenhoven, E., Zatloukal, K., Scherer, A., Litton, J.E., Meijer, G., Blomberg, N., Smith, A., Mons, B., Heringa, J., Koot, W.J., Smit, M.J., Hajduch, M., Rijnders, T. & Ussi, A. (2017) Bridging the translational innovation gap through good biomarker practice. Nature Reviews. Drug Discovery, 16, 587–588 [DOI: 10.1038/nrd.2017.72] [PubMed: 28450744].
[73] Kraus, V.B. (2018) Biomarkers as drug development tools: Discovery, validation, qualification and use. Nature Reviews. Rheumatology, 14, 354–362 [DOI: 10.1038/s41584-018-0005-9] [PubMed: 29760435].
[74] Shi, L., Campbell, G., Jones, W., Campagne, F., Wen, Z., Walker, S., Su, Z., Chu, T., Goodsaid, F., Pusztai, L. et al. (2010). The maqc-ii Project: A Comprehensive Study of Common Practices for the Development and Validation of Microarray-Based Predictive Models.
[75] Zhan, F., Huang, Y., Colla, S., Stewart, J.P., Hanamura, I., Gupta, S., Epstein, J., Yaccoby, S., Sawyer, J., Burington, B., Anaissie, E., Hollmig, K., Pineda-Roman, M., Tricot, G., van Rhee, F., Walker, R., Zangari, M., Crowley, J., Barlogie, B. & Shaughnessy, J.D. (2006) The molecular classification of multiple myeloma. Blood, 108, 2020–2028 [DOI: 10.1182/blood-2005-11-013458] [PubMed: 16728703].
[76] Shaughnessy, J.D., Jr, Zhan, F., Burington, B.E., Huang, Y., Colla, S., Hanamura, I., Stewart, J.P., Kordsmeier, B., Randolph, C., Williams, D.R., Xiao, Y., Xu, H., Epstein, J., Anaissie, E., Krishna, S.G., Cottler-Fox, M., Hollmig, K., Mohiuddin, A., Pineda-Roman, M., Tricot, G., van Rhee, F., Sawyer, J., Alsayed, Y., Walker, R., Zangari, M., Crowley, J. & Barlogie, B. (2007) A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood, 109, 2276–2284 [DOI: 10.1182/blood-2006-07-038430] [PubMed: 17105813].
[77] Zhan, F., Barlogie, B., Mulligan, G., Shaughnessy, J.D., Jr & Bryant, B. (2008) High-risk myeloma: A gene expression-based risk-stratification model for newly diagnosed multiple myeloma treated with high-dose therapy is predictive of outcome in relapsed disease treated with single-agent bortezomib or high-dose dexamethasone. Blood J Am. Blood, 111, 968–969 [DOI: 10.1182/blood-2007-10-119321] [PubMed: 18182586].
[78] Decaux, O., Lodé, L., Magrangeas, F., Charbonnel, C., Gouraud, W., Jézéquel, P., Attal, M., Harousseau, J.L., Moreau, P., Bataille, R., Campion, L., Avet-Loiseau, H., Minvielle, S. & Intergroupe Francophone du Myélome (2008) Prediction of survival in multiple myeloma based on gene expression profiles reveals cell cycle and chromosomal instability signatures in high-risk patients and hyperdiploid signatures in low-risk patients: A study of the intergroupe francophone du myelome. Journal of Clinical Oncology, 26, 4798–4805 [DOI: 10.1200/JCO.2007.13.8545] [PubMed: 18591550].
[79] Mulligan, G., Mitsiades, C., Bryant, B., Zhan, F., Chng, W.J., Roels, S., Koenig, E., Fergus, A., Huang, Y., Richardson, P., Trepicchio, W.L., Broyl, A., Sonneveld, P., Shaughnessy, J.D., Bergsagel, P.L., Schenkein, D., Esseltine, D.L., Boral, A. & Anderson, K.C. (2007) Gene expression profiling and correlation with outcome in clinical trials of the proteasome inhibitor bortezomib. Blood, 109, 3177–3188 [DOI: 10.1182/blood-2006-09-044974] [PubMed: 17185464].
[80] Costello, J.C., Heiser, L.M., Georgii, E., Gönen, M., Menden, M.P., Wang, N.J., Bansal, M., Ammad-ud-din, M., Hintsanen, P., Khan, S.A., Mpindi, J.P., Kallioniemi, O., Honkela, A., Aittokallio, T., Wennerberg, K., NCI DREAM Community, Collins, J.J., Gallahan, D., Singer, D., Saez-Rodriguez, J., Kaski, S., Gray, J.W. & Stolovitzky, G. (2014) A community effort to assess and improve drug sensitivity prediction algorithms. Nature Biotechnology, 32, 1202–1212 [DOI: 10.1038/nbt.2877] [PubMed: 24880487].
[81] Romero, K., Ito, K., Rogers, J.A., Polhamus, D., Qiu, R., Stephenson, D., Mohs, R., Lalonde, R., Sinha, V., Wang, Y., Brown, D., Isaac, M., Vamvakas, S., Hemmings, R., Pani, L., Bain, L.J., Corrigan, B., Alzheimer's Disease Neuroimaging Initiative & Coalition Against Major Diseases (2015) The future is now: Model-based clinical trial design for Alzheimer’s disease. Clinical Pharmacology and Therapeutics, 97, 210–214 [DOI: 10.1002/cpt.16] [PubMed: 25669145].
[82] Zhao, Y., Zeng, D., Socinski, M.A. & Kosorok, M.R. (2011) Reinforcement learning strategies for clinical trials in nonsmall cell lung cancer. Biometrics, 67, 1422–1433 [DOI: 10.1111/j.1541-0420.2011.01572.x] [PubMed: 21385164].
[83] Wong, C.H., Siah, K.W. & Lo, A.W. (2019) Estimation of clinical trial success rates and related parameters. Biostatistics, 20, 273–286 [DOI: 10.1093/biostatistics/kxx069] [PubMed: 29394327].
[84] Schork, N.J. (2015) Personalized medicine: Time for one-person trials. Nature, 520, 609–611 [DOI: 10.1038/520609a] [PubMed: 25925459].
[85] Vasudev, Naveen & Selby, Peter & Banks, Rosamonde. (2012). Renal cancer biomarkers: The promise of personalized care. BMC medicine. 10. 112. 10.1186/1741-7015-10-112.
[86] Zhang, X., Xiao, C., Glass, L. M., & Sun, J. (2020). DeepEnroll: Patient-Trial Matching with Deep Embedding and Entailment Prediction. In The Web Conference 2020 - Proceedings of the World Wide Web Conference, WWW 2020 (pp. 1029-1037). (The Web Conference 2020 - Proceedings of the World Wide Web Conference, WWW 2020). Association for Computing Machinery, Inc. https://doi.org/10.1145/3366423.3380181
[87] Calaprice-Whitty, D., Galil, K., Salloum, W., Zariv, A. & Jimenez, B. (2020) Improving clinical trial participant prescreening with artificial intelligence (AI): A comparison of the results of AI-assisted vs standard methods in 3 oncology trials. Therapeutic Innovation and Regulatory Science, 54, 69–74 [DOI: 10.1007/s43441-019-00030-4] [PubMed: 32008227].
[88] Vassy, J.L., Ho, Y.L., Honerlaw, J., Cho, K., Gaziano, J.M., Wilson, P.W.F. & Gagnon, D.R. (2018) Yield and bias in defining a cohort study baseline from electronic health record data. Journal of Biomedical Informatics, 78, 54–59 [DOI: 10.1016/j.jbi.2017.12.017] [PubMed: 29305952].
[89] Weber, G.M., Adams, W.G., Bernstam, E.V., Bickel, J.P., Fox, K.P., Marsolo, K., Raghavan, V.A., Turchin, A., Zhou, X., Murphy, S.N. & Mandl, K.D. (2017) Biases introduced by filtering electronic health records for patients with ‘complete data’. Journal of the American Medical Informatics Association, 24, 1134–1141 [DOI: 10.1093/jamia/ocx071] [PubMed: 29016972].
[90] Bain, E.E., Shafner, L., Walling, D.P., Othman, A.A., Chuang-Stein, C., Hinkle, J. & Hanina, A. (2017) Use of a novel artificial intelligence platform on mobile devices to assess dosing compliance in a phase 2 clinical trial in subjects with schizophrenia. JMIR mHealth and uHealth, 5, e18 [DOI: 10.2196/mhealth.7030] [PubMed: 28223265].
[91] Labovitz, D.L., Shafner, L., Reyes Gil, M., Virmani, D. & Hanina, A. (2017) Using artificial intelligence to reduce the risk of nonadherence in patients on anticoagulation therapy. Stroke, 48, 1416–1419 [DOI: 10.1161/STROKEAHA.116.016281] [PubMed: 28386037].
[92] Adamson, A.S. & Smith, A. (2018) Machine learning and health care disparities in dermatology. JAMA Dermatology, 154, 1247–1248 [DOI: 10.1001/jamadermatol.2018.2348] [PubMed: 30073260].
[93] Burlingame, E.A., Margolin, A.A., Gray, J.W. & Chang, Y.H. (2018) SHIFT: Speedy histopathological-to-immunofluorescent translation of whole slide images using conditional generative adversarial networks. Proceedings of SPIE–The International Society for Optical Engineering, 10581 [DOI: 10.1117/12.2293249] [PubMed: 30283195].
[94] Han, J., Chen, K., Fang, L., Zhang, S., Wang, F., Ma, H., Zhao, L. & Liu, S. (2019) Improving the efficacy of the data entry process for clinical research with a natural language processing-driven medical information extraction system: Quantitative field research. JMIR Medical Informatics, 7, e13331 [DOI: 10.2196/13331] [PubMed: 31313661].
[95] Gavrielov-Yusim, N., Kürzinger, M.L., Nishikawa, C., Pan, C., Pouget, J., Epstein, L.B., Golant, Y., Tcherny-Lessenot, S., Lin, S., Hamelin, B. & Juhaeri, J. (2019) Comparison of text processing methods in social media-based signal detection. Pharmacoepidemiology and Drug Safety, 28, 1309–1317 [DOI: 10.1002/pds.4857] [PubMed: 31392844].
[96] Barnett, I., Torous, J., Staples, P., Sandoval, L., Keshavan, M. & Onnela, J.P. (2018) Relapse prediction in schizophrenia through digital phenotyping: A pilot study. Neuropsychopharmacology, 43, 1660–1666 [DOI: 10.1038/s41386-018-0030-z] [PubMed: 29511333].
[97] Yurtman, A., Barshan, B. & Fidan, B. (2018) Activity recognition invariant to wearable sensor unit orientation using differential rotational transformations represented by quaternions. Sensors, 18, 2725 [DOI: 10.3390/s18082725] [PubMed: 30126235].
[98] Hannun, A.Y., Rajpurkar, P., Haghpanahi, M., Tison, G.H., Bourn, C., Turakhia, M.P. & Ng, A.Y. (2019) Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nature Medicine, 25, 65–69 [DOI: 10.1038/s41591-018-0268-3] [PubMed: 30617320].
[99] Ozkanca, Y., Öztürk, M.G., Ekmekci, M.N., Atkins, D.C., Demiroglu, C. & Ghomi, R.H. (2019) Depression screening from voice samples of patients affected by Parkinson’s disease. Digital Biomarkers, 3, 72–82 [DOI: 10.1159/000500354] [PubMed: 31872172].
[100] Han, X., Hu, Y., Foschini, L., Chinitz, L., Jankelson, L. & Ranganath, R. (2020) Deep learning models for electrocardiograms are susceptible to adversarial attack. Nature Medicine, 26, 360–363 [DOI: 10.1038/s41591-020-0791-x] [PubMed: 32152582].
[101] Vaci, N., Liu, Q., Kormilitzin, A., De Crescenzo, F., Kurtulmus, A., Harvey, J., O’Dell, B., Innocent, S., Tomlinson, A., Cipriani, A. & Nevado-Holgado, A. (2020) Natural language processing for structuring clinical text data on depression using UK-CRIS. Evidence-Based Mental Health, 23, 21–26 [DOI: 10.1136/ebmental-2019-300134] [PubMed: 32046989].
[102] Fonferko-Shadrach, B., Lacey, A.S., Roberts, A., Akbari, A., Thompson, S., Ford, D.V., Lyons, R.A., Rees, M.I. & Pickrell, W.O. (2019) Using natural language processing to extract structured epilepsy data from unstructured clinic letters: Development and validation of the ExECT (extraction of epilepsy clinical text) system. BMJ Open, 9, e023232 [DOI: 10.1136/bmjopen-2018-023232] [PubMed: 30940752].
[103] Savova, G.K., Danciu, I., Alamudun, F., Miller, T., Lin, C., Bitterman, D.S., Tourassi, G. & Warner, J.L. (2019) Use of natural language processing to extract clinical cancer phenotypes from electronic medical records. Cancer Research, 79, 5463–5470 [DOI: 10.1158/0008-5472.CAN-19-0579] [PubMed: 31395609].
[104] Estiri, H. & Murphy, S.N. (2019) Semi-supervised encoding for outlier detection in clinical observation data. Computer Methods and Programs in Biomedicine, 181, 104830 [DOI: 10.1016/j.cmpb.2019.01.002] [PubMed: 30658851].
[105] Glass & LMS (2019) G; Patil, R. Ai in Clinical Development: Improving Safety and Accelerating Results [White paper].
[106] Hicks, K.A., Mahaffey, K.W., Mehran, R., Nissen, S.E., Wiviott, S.D., Dunn, B., Solomon, S.D., Marler, J.R., Teerlink, J.R., Farb, A., Morrow, D.A., Targum, S.L., Sila, C.A., Hai, M.T.T., Jaff, M.R., Joffe, H.V., Cutlip, D.E., Desai, A.S., Lewis, E.F., Gibson, C.M., Landray, M.J., Lincoff, A.M., White, C.J., Brooks, S.S., Rosenfield, K., Domanski, M.J., Lansky, A.J., McMurray, J.J.V., Tcheng, J.E., Steinhubl, S.R., Burton, P., Mauri, L., O’Connor, C.M., Pfeffer, M.A., Hung, H.M.J., Stockbridge, N.L., Chaitman, B.R., Temple, R.J. & Standardized Data Collection for Cardiovascular Trials Initiative (SCTI) (2018) 2017 Cardiovascular and stroke endpoint definitions for clinical trials. Circulation, 137, 961–972 [DOI: 10.1161/CIRCULATIONAHA.117.033502] [PubMed: 29483172].
[107] Liu, Y. & Gopalakrishnan, V. (2017) An overview and evaluation of recent machine learning imputation methods using cardiac imaging data. Data, 2, 8 [DOI: 10.3390/data2010008] [PubMed: 28243594].
[108] Feng, T. & Narayanan, S. (2019) Imputing missing data in large-scale multivariate biomedical wearable recordings using bidirectional recurrent neural networks with temporal activation regularization. In:. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, 2529–2534 [DOI: 10.1109/EMBC.2019.8856966] [PubMed: 31946412].
[109] Qiu, Y.L., Zheng, H. & Gevaert, O.J. (2018). A Deep Learning Framework for Imputing Missing Values in Genomic Data.
[110] Tomic, A., Tomic, I., Rosenberg-Hasson, Y., Dekker, C.L., Maecker, H.T. & Davis, M.M. (2019) SIMON, an automated machine learning system, reveals immune signatures of influenza vaccine responses. Journal of Immunology, 203, 749–759 [DOI: 10.4049/jimmunol.1900033] [PubMed: 31201239].
[111] Rigdon, J., Baiocchi, M. & Basu, S. (2018) Preventing false discovery of heterogeneous treatment effect subgroups in randomized trials. Trials, 19, 382 [DOI: 10.1186/s13063-018-2774-5] [PubMed: 30012181].
[112] Kalscheur, M.M., Kipp, R.T., Tattersall, M.C., Mei, C., Buhr, K.A., DeMets, D.L., Field, M.E., Eckhardt, L.L. & Page, C.D. (2018) Machine learning algorithm predicts cardiac resynchronization therapy outcomes: Lessons from the companion trial. Circulation. Arrhythmia and Electrophysiology, 11, e005499 [DOI: 10.1161/CIRCEP.117.005499] [PubMed: 29326129].
[113] Linden, A. & Yarnold, P.R. (2016) Combining machine learning and propensity score weighting to estimate causal effects in multivalued treatments. Journal of Evaluation in Clinical Practice, 22, 871–881 [DOI: 10.1111/jep.12610] [PubMed: 27421786].
[114] Schuler, M.S. & Rose, S. (2017) Targeted maximum likelihood estimation for causal inference in observational studies. American Journal of Epidemiology, 185, 65–73 [DOI: 10.1093/aje/kww165] [PubMed: 27941068].
[115] Komorowski, M., Celi, L.A., Badawi, O., Gordon, A.C. & Faisal, A.A. (2018) The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care. Nature Medicine, 24, 1716–1720 [DOI: 10.1038/s41591-018-0213-5] [PubMed: 30349085].
[116] Ghassemi, M., Naumann, T., Schulam, P., Beam, A.L., Chen, I.Y. & Ranganath, R. (2019) Practical guidance on artificial intelligence for health-care data. Lancet. Digital Health, 1, e157–e159 [DOI: 10.1016/S2589-7500(19)30084-6] [PubMed: 33323184].
[117] Paul, D., Sanap, G., Shenoy, S., Kalyane, D., Kalia, K. & Tekade, R.K. (2021) Artificial intelligence in drug discovery and development. Drug Discovery Today, 26, 80–93 [DOI: 10.1016/j.drudis.2020.10.010] [PubMed: 33099022].
[118] SciBite Limited (2022). Available at: https://www.scibite.com/
[119] Hauben, M. (2020) The potential of artificial intelligence in pharmacovigilance. Journal of the Faculty of Pharmaceutical Medicine. Available at: https://www.fpm.org.uk/journals/the-potential-of-artificial-intelligence-in-pharmacovigilance/. 10 November 2020.
[120] Correia, R.B., Li, L. & Rocha, L.M. (2016) Monitoring potential drug interactions and reactions via network analysis of Instagram user timelines. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 21, 492–503 [PubMed: 26776212] [PubMed Central: PMC4720984].
[121] Arlett, P., Straus, S. & Rasi, G. (2020) Pharmacovigilance 2030: Invited commentary for the January 2020 ‘futures’ edition of Clinical Pharmacology and therapeutics. Clinical Pharmacology and Therapeutics, 107, 89–91 [DOI: 10.1002/cpt.1689]. Epub 22 November 2019 [PubMed: 31758540] [PubMed Central: PMC6977396].
[122] Mishra, V., Chanda, P., Tambuwala, M.M. & Suttee, A. (2019)Personalized medicine: An overview. International Journal of Pharmaceutical Quality Assurance, 10, 290–294 [DOI: 10.25258/ijpqa.10.2.13].
[123] Fu, J. & Yan, H. (2012) Controlled drug release by a nanorobot. Nature Biotechnology, 30, 407–408 [DOI: 10.1038/nbt.2206] [PubMed: 22565965].