• editor.aipublications@gmail.com
  • Track Your Paper
  • Contact Us
  • ISSN: 2456-8635

International Journal Of Horticulture, Agriculture And Food Science(IJHAF)

Response of Several Soybean Varieties to Co-inoculation with Rhizobium and Mycorrhiza Biofertilizers in Dryland of East Lombok, Indonesia

Wayan Wangiyana , Herman Suheri , I Komang Damar Jaya

International Journal of Horticulture, Agriculture and Food science(IJHAF), Vol-6,Issue-6, November - December 2022, Pages 1-9, 10.22161/ijhaf.6.6.1

Download | Downloads : 3 | Total View : 666

Article Info: Received: 12 Oct 2022; Received in revised form: 30 Oct 2022; Accepted: 06 Nov 2022; Available online: 11 Nov 2022


In Indonesia, soybean is the most important legume crop, which can develop Rhizobium and mycorrhizal symbiosis for better nutrition, especially in dryland areas. A trial for investigating responses of several varieties of soybean to co-inoculation with Rhizobium and mycorrhiza biofertilizers has been carried out in East Lombok, Indonesia, from August to October 2022. The Randomized Block Design was used to arrange the two treatment factors tested, i.e. biofertilizer application (B0= without biofertilizer; B1= Rhizobium inoculant; B2: co-inoculation of soybean with Rhizobium and mycorrhiza biofertilizers) and soybean varieties (V1= Detap, V2: Biosoy-2, V3= Dena-1). The trial was made in three blocks (replications). The variables included plant height, trifoliate number, root volume, and biomass yield and pod number as a yield potential. Results indicated that co-inoculation several varieties of soybean with Rhizobium and mycorrhiza biofertilizer increased yield potential of soybean in dryland as indicated by higher nodule number, trifoliate number, pod number and biomass yield of soybean, especially of Detap (V1) and Dena-1 (V3) varieties under co-inoculation treatment (B2), compared to inoculation with Rhizobium only (B1) or unioculated control (B0). Further studies on more varieties of soybean need to be conducted in different types of soil to find out the most responsive varieties to co-inoculation with Rhizobium and mycorrhiza biofertilizer to increase soybean productivity especially in dryland areas.

Co-inoculation, Mycorrhizal fungi, Rhizobium, Soybean, Dryland.

[1] Sembiring, L.J. RI impor kedelai 2,5 juta ton setahun, nilainya capai Rp 21 T. CNBC Indonesia, 07 March 2022. https://www.cnbcindonesia.com/news/20220307122046-4-320572/ri-impor-kedelai-25-juta-ton-setahun-nilainya-capai-rp-21-t#:~:text=Dari%20data%20Badan%20Pusat%20Statistik,sebanyak%202%2C47%20juta%20ton.
[2] Adisarwanto, T. Strategi peningkatan produksi kedelai sebagai upaya untuk memenuhi kebutuhan di dalam negeri dan mengurangi impor. Pengembangan Inovasi Pertanian 3(4): 319-331 (2010).
[3] Kusumowarno, S. Peluang peningkatan produksi kedelai lahan kering mendukung kemandirian pangan. Prosiding Seminar Hasil Penelitian Tanaman Aneka Kacang dan Umbi, Balitkabi. 2014.
[4] Kuntyastuti, H., and Taufic, A. Komponen teknologi budidaya kedelai di lahan kering. Buletin Palawija, 16: 1-17.
[5] Adisarwanto, T., Suhendi, R., Anwari, M., Sinaga and Ma’shum, M. Kajian residu pupuk nitrogen untuk padi gora terhadap hasil kedelai yang ditanam setelah padi gora. In: Suyamto H., Achmad Winarto, Sugiono and Sunardi (Eds), Risalah Seminar Hasil Penelitian Sistem Usahatani di Nusa Tenggara Barat (Proceedings of a seminar on farming systems, held in Mataram, 22-26 October, 1991). Malang, Indonesia: Balai Penelitian Tanaman Pangan Malang, Indonesia (1992).
[6] Wangiyana, W., Cornish, P.S., and Morris, E.C. Arbuscular mycorrhizal fungi (AMF) dynamics in contrasting cropping systems on vertisol and regosol soils of Lombok, Indonesia. Experimental Agriculture, 42: 427-439 (2006). (DOI: https://dx.doi.org/10.1017/S0014479706003826).
[7] Wangiyana, W., Cornish, P.S., and Ryan, M.H. Arbuscular Mycorrhizas in Various Rice Growing Environments and their Implication for Low Soybean Yields on Vertisol Soil in Central Lombok, Indonesia. IOSR - Journal of Environmental Science, Toxicology and Food Technology, 10(12)(III): 51-57 (Dec 2016).
[8] Wangiyana, W., Dulur, N.W.D., and Farida, N. Mycorrhizal inoculation to increase yield of soybean direct-seeded following rice of different growing techniques in vertisol soil, Lombok, Indonesia. International Journal of Environment, Agriculture and Biotechnology, 4(3): 884-891 (2019).
[9] Sinclair, T.R., and de Wit, C.T. Photosynthate and nitrogen requirements for seed production by various crops. Science, 189: 565-567 (1975).
[10] Antunes, P.M., Deaville, D., and Goss, M.J. (2006a). Effect of two AMF life strategies on the tripartite symbiosis with Bradyrhizobium japonicum and soybean. Mycorrhiza (2006) 16: 167–173.
[11] Antunes, P.M., de Varennes, A., Rajcan, I., and Goss, M.J. (2006b). Accumulation of specific flavonoids in soybean (Glycine max (L.) Merr.) as a function of the early tripartite symbiosis with arbuscular mycorrhizal fungi and Bradyrhizobium japonicum (Kirchner) Jordan. Soil Biology & Biochemistry 38 (2006) 1234–1242.
[12] Antunes, P.M., de Varennes, A., Zhang, T., and Goss, M.J. (2006c). The Tripartite Symbiosis Formed by Indigenous Arbuscular Mycorrhizal Fungi, Bradyrhizobium japonicum and Soya Bean Under Field Conditions. J. Agronomy & Crop Science 192, 373—378 (2006).
[13] Wangiyana, W., and Farida, N. Application bio-fertilizers to increase yields of zero-tillage soybean of two varieties under different planting distances in dry season on vertisol land of Central Lombok, Indonesia. AIP Conference Proceedings 2199, 040009 (2019).
[14] Riley, J. Experimental Agriculture (Cambridge), 37:115–123 (2001).
[15] Portes, T.d.A., de Araujo, B.R.B., and de Melo, H.C. Growth analysis, photosynthate partition and nodulation in bean and soybean. Ciencia Rural, 52: 10, e20210282 (2022).
[16] Kasperbauer, M.J., Hunt, P.G., and Sojka, R.E. Photosynthate partitioning and nodule formation in soybean plants that received red or far-red light at the end of the photosynthetic period. Physiol. Plant., 61: 549-554 (1984).
[17] Li, Y., Parsons, R., Day, D.A., and Bergersen, F.J. Reassessment of major products of N2 fixation by bacteroids from soybean root nodules. Microboilogy, 148: 1959-1966 (2022).
[18] Collino, D.J., Salvagiotti, F., Perticari, A., Piccinetti, C., Ovando, G., Urquiaga, S., and Racca, R.W. Biological nitrogen fixation in soybean in Argentina: relationships with crop, soil, and meteorological factors. Plant Soil, DOI: 10.1007/s11104-015-2459-8 (2015).
[19] Egli, D.B. The relationship between the number of nodes and pods in soybean communities. Crop Sci., 53: 1668-1676 (2013).
[20] Smith, S.E., and Read, D.J. Mycorrhizal Symbiosis. Third Edition. Elsevier, Amsterdam (2008).
[21] Miao, S.-J., Qiao, Y.-F., Han, X.-Z., and An, M. Nodule formation and development in soybeans (Glycine max L.) in response to phosphorus supply in solution culture. Pedosphere, 17: 36-43 (2007).
[22] Igiehon, O.N., and Babalola, O.O. Rhizobium and mycorrhizal fungal species improved soybean yield under drought stress conditions. Curr. Microbiol., 78: 1615-1627 (2021).