• editor.aipublications@gmail.com
  • Track Your Paper
  • Contact Us
  • ISSN: 2456-8635 (NAAS Rating: 3.43)

International Journal Of Horticulture, Agriculture And Food Science(IJHAF)

Radiosensitivity and Seedling Growth of Several Genotypes of Paddy Rice Mutants Irradiated with Gamma Rays at Different Doses

Ni Wayan Sri Suliartini , W. Wangiyana , I.G.P.M. Aryana , A.A.K. Sudharmawan


International Journal of Horticulture, Agriculture and Food science(IJHAF), Vol-4,Issue-6, November - December 2020, Pages 242-247, 10.22161/ijhaf.4.5.5

Download | Downloads : 12 | Total View : 1065

Article Info: Received: 06 Nov 2020; Received in revised form: 01 Dec 2020; Accepted: 12 Dec 2020; Available online: 26 Dec 2020

Share

Researchers use mutation induction in rice to create high genetic diversity. The basic population with high genetic diversity will facilitate the selection process for the desired good characters. This study aimed to determine the optimal dose that induces the highest genetic diversity in four lowland rice genotypes. The research materials were four genotypes of lowland rice, namely “G10”, “G16”, “Baas Selem”, and “Inpago Unram-1”. Gamma irradiation was carried out at the Center for Isotope and Radiation Application (PAIR) BATAN. Each genotype was irradiated at doses of 200, 300, 400 and 500 Gy. The seeding is done in the glasshouse of the Faculty of Agriculture, University of Mataram. Observations were made on the number of growing seeds, plant height and number of leaves. The LD50 value was determined based on the results of the regression analysis of the number of growing seeds at the four irradiation doses plus control (0 Gy). The results indicated that (1) the numbers of growing seeds decreased as the doses of gamma irradiation increased, (2) the LD50 value of the four rice genotypes ranged from 264 to 518 Gy, (3) the optimal dose of gamma ray irradiation for G10, G16, Baas Selem, and Inpago Unram-1 were 264 Gy, 398 Gy, 316 Gy and 518 Gy, respectively. (4) Among the four rice genotypes teasted, “G10” mutant was the most sensitive to gamma ray irradiation, whereas” Inpago Unram-1” mutant was the least sensitive genotype.

Irradiation, paddy rice, gamma ray, sensitivity, LD50.

[1] Suryana A dan Kariyasa K. 2008. Ekonomi Padi di Asia: Suatu Tinjauan Berbasis Kajian Komparatif. Forum Penelitian Agro Ekonomi, 26(1): 17-31.
[2] Guo J, Hu X, Gao L, Xie K, Ling N, Shen Q & Guo S. 2017. The rice production practices of high yield and high nitrogen use efficiency in Jiangsu, China. Scientific Reports, 7: 2101.
[3] Souleymane O, Salifou M, Massaoudou H, Manneh B. 2017. Genetic Improvement of Rice (Oryza sativa) For Salt Tolerance: A Review. International Journal of Advanced Research in Botany, 3(3): 22-33.
[4] Bo Peng, Jun Li, Dong-Yan Kong, Lu-Lu He, Meng-Ge Li, Tondi-Yacouba Nassirou, Xiao-Hua Song, Juan Peng, Yue Jiang, Yan-Fang Sun, Rui-Hua Pang, Qing-Qing Xin, Gui-Ying Guo, Jin-Tiao Li, Quan-Xiu Wang, Shi-Zhi Song, Bin Duan, Yu Peng, Yu-Chen Liu & Hong-Yu Yuan. 2019. Genetic Improvement of Grain Quality Promoted by High and New Technology in Rice. Journal of Agricultural Science, 11 (1).
[5] Purwanto E, Nandariyah, Yuwono SS and Yunindanova MB. Induced Mutation for Genetic Improvement in Black Rice Using Gamma-Ray. 2019. AGRIVITA Journal of Agricultural Science, 41(2): 213–220.
[6] Suliartini NWS., Wijayanto, Madiki, Boer, Muhidin, Juniawan. 2018. Relationship of Some Upland Rice Genotype After Gamma Irradiation. IOP Conf. Series: Earth and Environmental Science, 122: 012033.
[7] Suliartini NWS, Wijayanto T, Madiki, Boer D, Muhidin, Tufaila M. 2018. Yield potential improvement of upland red rice using gamma irradiation on local upland rice from Southeast Sulawesi Indonesia. Bioscience Research, 15(3): 1673-1678.
[8] Suliartini NWS, Aryana IGPM, Wangiyana W, Ngawit K, Muhidin, Rakian TC. 2020. Identification Of Upland Red Rice Mutant Lines (oryza sativa L.) High Yield Potential. IJSTR 9 (3): 4690-4692.
[9] Faisal, Mustafa M and Yunus. 2019. A Review of Technology Innovation in Increasing Rice Production. ATJ, 4 (2): 75 -82.
[10] Lakitan B, Lindiana L, Laily I. Widuri, Kartika K, Siaga E, Meihana M, Wijaya A. 2019. Inclusive and Ecologically-Sound Food Crop Cultivation at Tropical Non-Tidal Wetlands in Indonesia. AGRIVITA Journal of Agricultural Science, 41(1): 23-31.
[11] Jong, HN. 2020. In Indonesia’s new rice plan, experts see the blueprint of an epic past failure. Mongabay. https://news.mongabay.com/2020/05/indonesia-mega-rice-project-peatland-food-crisis/. Accessed date 19 Oktober 2020.
[12] Khush, G.S., and Virk, P.S. 2005. IR varieties and their impact. Los Baños (Philippines): International Rice Research Institute. 163 p.
[13] Oladosu, Y., Rafii, M.Y., Abdullah, N., Hussin, G., Ramli, A., Rahim, H.A., Miah, G., and Usman, M. 2016. Principle and application of plant mutagenesis in crop improvement: a review. Biotechnology & Biotechnological Equipment, 30(1): 1-16.
[14] Liu, B.M, B.J. Wu. P. Tong and J.D. Wu. 2012. A novel semi-dwarf mutant mutagenized with ion beam irradiation controlled by a dominant gene. SD-d(t). Rice Genetics Newsletter, 25: 20-22
[15] Efendi, Bakhtiar, Zuyasna, Alamsyah W, Syamsuddin, Zakaria S, Supriatna N, and Sobrizal. 2017. The effect of gamma ray irradiation on seed viability and plant growth of Aceh’s local rice (Oryza sativa L.). Advances in Natural and Applied Sciences, 11(3): 91-96.
[16] Suliartini NWS, Kuswanto, Basuki N, Soegianto A. 2015. The Sensitivity of Two Southeast Sulawesi Local Red Rice Varieties to Gamma Irradiation. IOSR-JESTFT, 9(1): 24-31.
[17] Nunoo J, Quartey EK, Amoatey HM, Klu GYP. 2014. Effect of Recurrent Irradiation on the Improvement of a Variant Line of Wild Tomato (Solanum pimpinellifolium). Journal of Radiation Research and Applied Sciences, 7:337-383.
[18] Herison, C., Rustikawati, H.S. Surjono, S.I. Aisyah. 2008. Induksi mutasi melalui sinar gamma terhadap benih untuk meningkatkan keragaman populasi dasar jagung (Zea mays L.). Akta Agrosia, 11:57-62.
[19] GolubInova I and Gecheff K. 2011. M1 cytogenetic and physiological effects of gamma-rays in sudan grass (Sorghum Sudanense (piper.) stapf). Bulg J Agric Sci, 17: 417-423.
[20] Indriyati, R., Mattjik NA, Setiawan A, Sudarsono. 2011. Radiosensitivitas pisang cv. Ampyang dan potensi penggunaan iradiasi sinar gamma untuk induksi varian. J. Agron. Indonesia 39: 112-118.
[21] Ángeles-Espino A, Valencia-Botín AJ, Virgen-Calleros G, Ramírez-Serrano C, ParedesGutiérrez L, Hurtado-De la Peña S. 2013. Determinación de la dosis letal (DL50 ) con Co60 en vitroplántulas de Agave tequilana var. Azul. Rev Fitotec Mex, 36: 381-386.
[22] Maharani S, Khumaida N, Syukur M, dan Ardie SW. 2015. Radiosensitivitas dan Keragaman Ubi Kayu (Manihot esculenta Crantz) Hasil Iradiasi Sinar Gamma. J. Agron. Indonesia, 43(2): 111-117.
[23] Nura, Syukur M, Khumaida N, dan Widodo. 2015. Radiosensitivitas dan Heritabilitas Ketahanan terhadap Penyakit Antraknosa pada Tiga Populasi Cabai yang Diinduksi Iradiasi Sinar Gamma. J. Agron. Indonesia, 43(3): 201-206.
[24] Aisyah, S.I., Aswidinnoor H, Saefuddin A, Marwoto B, Sastrosumarjo S. 2009. Induksi mutasi pada setek pucuk anyelir (Dianthus caryophyllus Linn.) melalui iradiasi sinar gamma. J. Agron. Indonesia, 37(1): 62-70.
[25] Astuti D, Sulistyowati Y, Nugroho S. 2019. Uji Radiosensitivitas Sinar Gamma untuk Menginduksi Keragaman Genetik Sorgum Berkadar Lignin Tinggi. Jurnal Ilmiah Aplikasi Isotop dan Radiasi (A Scientific Journal for The Applications of Isotopes and Radiation), 15 (1): 1-6
[26] Álvarez-Holguín A, Morales-Nieto CR, Avendaño-Arrazate CH, Corrales-Lerma R, Villarreal-Guerrero F, Santellano-Estrada E and Gómez-Simuta Y. 2019. Mean lethal dose (LD50) and growth reduction (GR50) due to gamma radiation in Wilman lovegrass (Eragrostis superba). Rev Mex Cienc Pecu, 10(1): 227-238.
[27] Warman B, Sobrizal, Suliansyah I, Swasti E dan Syarif A. 2015. Perbaikan Genetik Kultivar Padi Beras Hitam Lokal Sumatera Barat Melalui Mutasi Induksi Genetic Improvement of West Sumatra Black Rice Cultivar Through Mutation Induction. Jurnal Ilmiah Aplika si Isotop dan Radiasi (A Scientific Journal for The Applications of Isotopes and Radiation), 11(2): 125-136.
[28] Kumar DP, Chaturvedi A, Sreedhar M, Aparna M, Venu-Babu P and Singhal RK. 2013. Gamma radiosensitivity study on rice (Oryza sativa L.). Asian Journal of Plant Science and Research, 3(1): 54-68.
[29] Roslim DI, Herman, and Fiatin I. 2015. Lethal Dose 50 (LD50) of Mungbean (Vigna radiata L. Wilczek) Cultivar Kampar. SABRAO Journal of Breeding and Genetics, 47(4): 510-516.
[30] Human S. 2012. Pemanfaatan teknologi nuklir untuk pemuliaan sorgum. Makalah Workshop on the Current Status and Chalengges in Sorghum Development in Indonesia, SEAMEO BIOTROP.
[31] Harding SS, Johnson SD, Taylor DR, Dixon CA and Turay MY. 2012. Effect of Gamma Rays on Seed Germination, Seedling Height, Survival Percentage and Tiller Production in Some Rice Varieties Cultivated in Sierra Leone. American Journal of Experimental Agriculture 2(2): 247-255.
[32] Biogen. 2011. Pemanfaatan Sinar Radiasi Gamma dalam Pemuliaan Tanaman. Warta Penelitian dan Pengembangan Pertanian, 33(1): 7-8.
[33] Raj AY, Raj AS and Rao GM. 1972. Mutagenic Studies of Gamma Rays on Oryza sativa L. Cytologia, 37: 469-477.
[34] Harding, S.S., Mohamad, O. 2009. Radiosensitivity test on two varieties of Terengganu and Arab used in mutation breeding of Roselle (Hibiscus sabdariffa L.). African Journal of Plant Science, 3(8): 181-183.
[35] Sinha, R.P., Chowdhury, S.K. 1991. Induced codominant mutation for dwarfism in lentil (Lens culinaris Med). Indian J. Genet, 51: 370-371.