• editor.aipublications@gmail.com
  • Track Your Paper
  • Contact Us
  • ISSN: 2456-8635

International Journal Of Horticulture, Agriculture And Food Science(IJHAF)

In vitro experiments of prokaryotic and eukaryotic antimicrobial peptide cytotoxicity in intestinal epithelial cells

Rawaz Rizgar Hassan , Shang Ziyad Abdulaqadir , Rzgar Farooq Rashid , Abdullah Othman Hassan


International Journal of Horticulture, Agriculture and Food science(IJHAF), Vol-5,Issue-6, November - December 2021, Pages 6-14, 10.22161/ijhaf.5.6.2

Download | Downloads : 3 | Total View : 224

Article Info: Received: 02 Nov 2020; Received in revised form: 03 Dec 2021; Accepted: 12 Dec 2021; Available online: 19 Dec 2021

Share

These proteinaceous molecules, called antimicrobial peptides (AMPs), are a varied collection of antimicrobial peptides. The ability of AMPs to combat gut infections necessitates further study of the AMP-GI tract interaction. These peptides need to be tested in vitro for cytotoxicity before they may be considered for use in clinical infections. Using the MTT conversion assay, neutral red dye absorption assay, and a comparison to vancomycin, researchers examined the cytotoxicity of gallidermin, nisin A, natural magainin peptides, and melittin in two gastrointestinal cell types (HT29 and Caco-2). Sheep erythrocyte hemolytic activity was also studied, and the influence of AMPs on paracellular permeability was assessed using transepithelial resistance (TEER) and TEM. Gallidermin, nisin A, magainin I, magainin II, and melittin were the least cytotoxic AMPs. To our knowledge, only Melittin and NIS caused considerable hemolysis. There are two distinct ways that melittin and nisin differ in their ability to kill bacteria. It was the only AMP that had an effect on the permeability of the paracellular space. Intestinal tight junctions and cell–cell adhesion were destroyed by long-term melittin therapy, as were microvilli, cell debris, and cell–cell adhesion. Antimicrobial activity and low cytotoxicity make Gallidermin a promising therapeutic drug. The antibacterial properties of Melittin are limited, but its ability to transport poorly bioavailable medicines may be useful.

eukaryotic, antimicrobial peptide cytotoxicity prokaryotic.

[1] Talandashti, R., Mahdiuni, H., Jafari, M., & Mehrnejad, F. (2019). Molecular basis for membrane selectivity of antimicrobial peptide pleurocidin in the presence of different eukaryotic and prokaryotic model membranes. Journal of chemical information and modeling, 59(7), 3262-3276.
[2] Heath, G. R., Harrison, P. L., Strong, P. N., Evans, S. D., & Miller, K. (2018). Visualization of diffusion limited antimicrobial peptide attack on supported lipid membranes. Soft Matter, 14(29), 6146-6154.
[3] Rashid, R. F., Çalta, M., & Başusta, A. (2018). Length-Weight Relationship of Common Carp (Cyprinus carpio L., 1758) from Taqtaq Region of Little Zab River, Northern Iraq. Turkish Journal of Science and Technology, 13(2), 69-72.
[4] Wang, G., Zietz, C. M., Mudgapalli, A., Wang, S., & Wang, Z. (2021). The evolution of the antimicrobial peptide database over 18 years: Milestones and new features. Protein Science.
[5] Qutb, A. M., Wei, F., & Dong, W. (2020). Prediction and characterization of cationic arginine-rich plant antimicrobial peptide SM-985 From Teosinte (Zea mays ssp. mexicana). Frontiers in Microbiology, 11, 1353.
[6] Bulut, H., & Rashid, R. F. The zooplankton of some streams flow into the zab river,(northern iraq). Ecological Life Sciences, 15(3), 94-98.
[7] Guan, Q., Huang, S., Jin, Y., Campagne, R., Alezra, V., & Wan, Y. (2019). Recent advances in the exploration of therapeutic analogues of gramicidin S, an old but still potent antimicrobial peptide. Journal of medicinal chemistry, 62(17), 7603-7617.
[8] Rice, A., & Wereszczynski, J. (2017). Probing the disparate effects of arginine and lysine residues on antimicrobial peptide/bilayer association. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1859(10), 1941-1950.
[9] Rashid, R. F., & Basusta, N. (2021). Evaluation and comparison of different calcified structures for the ageing of cyprinid fish leuciscus vorax (heckel, 1843) from karakaya dam lake, turkey. Fresenius environmental bulletin, 30(1), 550-559.
[10] Rank, L. A., Agrawal, A., Liu, L., Zhu, Y., Mustafi, M., Weisshaar, J. C., & Gellman, S. H. (2020). Diverse Impacts on Prokaryotic and Eukaryotic Membrane Activities from Hydrophobic Subunit Variation Among Nylon-3 Copolymers. ACS Chemical Biology, 16(1), 176-184.
[11] Oliva, R., Del Vecchio, P., Grimaldi, A., Notomista, E., Cafaro, V., Pane, K., ... & Petraccone, L. (2019). Membrane disintegration by the antimicrobial peptide (P) GKY20: lipid segregation and domain formation. Physical chemistry chemical physics, 21(7), 3989-3998.
[12] RASHID, R. (2017). Karakaya Baraj Gölünde (Malatya-Türkiye) yaşayan aspius vorax'da yaş tespiti için en güvenilir kemiksi yapının belirlenmesi/Determination of most reliable bony structure for ageing of aspius vorax inhabiting Karakaya Dam Lake (Malatya-Turkey).
[13] Talandashti, R., Mehrnejad, F., Rostamipour, K., Doustdar, F., & Lavasanifar, A. (2021). Molecular Insights into Pore Formation Mechanism, Membrane Perturbation, and Water Permeation by the Antimicrobial Peptide Pleurocidin: A Combined All-Atom and Coarse-Grained Molecular Dynamics Simulation Study. The Journal of Physical Chemistry B, 125(26), 7163-7176.
[14] Torres, M. D., Cao, J., Franco, O. L., Lu, T. K., & de la Fuente-Nunez, C. (2021). Synthetic Biology and Computer-Based Frameworks for Antimicrobial Peptide Discovery. ACS nano, 15(2), 2143-2164.
[15] Paray, B. A., Ahmad, A., Khan, J. M., Taufiq, F., Pathan, A., Malik, A., & Ahmed, M. Z. (2021). The role of the multifunctional antimicrobial peptide melittin in gene delivery. Drug Discovery Today.
[16] Bulut, H., Rashid, R. F., & Saler, S. ERBİL (IRAK) İLİNDE BULUNAN BAZI GÖLETLERİN ZOOPLANKTONU ÖZ.
[17] Enoki, T. A., Moreira-Silva, I., Lorenzon, E. N., Cilli, E. M., Perez, K. R., Riske, K. A., & Lamy, M. T. (2018). Antimicrobial peptide K0-W6-Hya1 induces stable structurally modified lipid domains in anionic membranes. Langmuir, 34(5), 2014-2025.
[18] Feng, X., Jin, S., Wang, M., Pang, Q., Liu, C., Liu, R., ... & Liu, Y. (2020). The critical role of tryptophan in the antimicrobial activity and cell toxicity of the duck antimicrobial peptide dCATH. Frontiers in Microbiology, 11, 1146.
[19] Feng, X., Jin, S., Wang, M., Pang, Q., Liu, C., Liu, R., ... & Liu, Y. (2020). The critical role of tryptophan in the antimicrobial activity and cell toxicity of the duck antimicrobial peptide dCATH. Frontiers in Microbiology, 11, 1146.
[20] Pala, G., Caglar, M., Faruq, R., & Selamoglu, Z. (2021). Chlorophyta algae of Keban Dam Lake Gülüşkür region with aquaculture criteria in Elazıg, Turkey. Iranian Journal of Aquatic Animal Health, 7(1), 32-46.
[21] Pardhi, D. M., Karaman, D. Ş., Timonen, J., Wu, W., Zhang, Q., Satija, S., ... & Rosenholm, J. M. (2020). Anti-bacterial activity of inorganic nanomaterials and their antimicrobial peptide conjugates against resistant and non-resistant pathogens. International journal of pharmaceutics, 586, 119531.
[22] Rashid, rf, çoban, mz, & saler, s. Evaluation of water quality of keban dam lake (elaziğ-turkey).
[23] Henderson, J. M., Iyengar, N. S., Lam, K. L. H., Maldonado, E., Suwatthee, T., Roy, I., ... & Lee, K. Y. C. (2019). Beyond electrostatics: Antimicrobial peptide selectivity and the influence of cholesterol-mediated fluidity and lipid chain length on protegrin-1 activity. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1861(10), 182977.
[24] Almasia, N. I., Molinari, M. P., Maroniche, G. A., Nahirñak, V., Barón, M. P. B., Taboga, O. A., & Rovere, C. V. (2017). Successful production of the potato antimicrobial peptide Snakin-1 in baculovirus-infected insect cells and development of specific antibodies. BMC biotechnology, 17(1), 1-11.
[25] Rashid, R. F., & Saler, S. EFFECTS OF GLOBAL WARMING ON AQUATIC LIFE.
[26] Zahedifard, F., & Rafati, S. (2018). Prospects for antimicrobial peptide-based immunotherapy approaches in Leishmania control. Expert review of anti-infective therapy, 16(6), 461-469.
[27] Ma, Z., Qu, B., Yao, L., Gao, Z., & Zhang, S. (2020). Identification and functional characterization of ribosomal protein S23 as a new member of antimicrobial protein. Developmental & Comparative Immunology, 110, 103730.
[28] Shekha, M. S., Hassan, A. O., & Othman, S. A. (2013). Effects of Quran listening and music on electroencephalogram brain waves. Egypt. J. Exp. Biol, 9(1), 1-7.
[29] Buonocore, F., Picchietti, S., Porcelli, F., Della Pelle, G., Olivieri, C., Poerio, E., ... & Scapigliati, G. (2019). Fish-derived antimicrobial peptides: Activity of a chionodracine mutant against bacterial models and human bacterial pathogens. Developmental & Comparative Immunology, 96, 9-17.
[30] Salinas, N., Tayeb-Fligelman, E., Sammito, M. D., Bloch, D., Jelinek, R., Noy, D., ... & Landau, M. (2021). The amphibian antimicrobial peptide uperin 3.5 is a cross-α/cross-β chameleon functional amyloid. Proceedings of the National Academy of Sciences, 118(3).
[31] F Ramandi, M., Piranfar, V., J Nadoushan, M., R Sarshoori, J., J Misialek, M., Heiat, M., & Moosazadeh Moghaddam, M. (2017). Dose-response effects of the CM11 as a short cationic antimicrobial peptide on histopathological and biochemical changes in mice. Current Chemical Biology, 11(2), 150-157.