[1] King B.A. and D.C. Kincaid, 1997. Optimal Performance from Center Pivot Sprinkler Systems, University of Idaho College of Agriculture, http://www.cals.uidaho.edu/edcomm/pdf/BUL/BUL0797.pdf
[2] Smith P., 2010. EVALUATING A CENTRE PIVOT IRRIGATION SYSTEM, State of New South Wales through Department of Industry and Investment (Industry & Investment NSW), http://www.dpi.nsw.gov.au/__data/assets/pdf_file/0003/317478/Evaluating-a-centre-pivot-irrigation-system.pdf
[3] Omary M., C.R. Camp and E.J. Sadler, 1997. CENTER PIVOT IRRIGATION SYSTEM MODIFICATION TO PROVIDE VARIABLE WATER APPLICATION DEPTHS, APPLIED ENGINEERING IN AGRICULTURE, 13 (2): 235-239. http://naldc.nal.usda.gov/download/14326/PDF
[4] Porter D.O. and T.H. Marek, 2009. CENTER PIVOT SPRINKLER APPLICATION DEPTH AND SOIL WATER HOLDING CAPACITY, Proceedings of the 21st Annual Central Plains Irrigation Conference, Colby Kansas, 112-121. http://www.ksre.ksu.edu/irrigate/OOW/P09/Porter09.pdf
[5] Vories E., P. Tacker, D. Stephenson, S. Bajwa and C. Perry, 2008. Performance of a Variable Rate Center Pivot System, World Environmental and Water Resources Congress 2008: Ahupua’A, 1-10, http://dx.doi.org/10.1061/40976(316)83)
[6] Anwar A., 1999. Friction Correction Factors for Center-Pivots, J. Irrig. Drain Eng., 125 (5): 280-286. http://dx.doi.org/10.1061/(ASCE)0733-9437(1999)125:5(280)
[7] Anwar A., 2000. Correction Factors for Center Pivots with End Guns, J. Irrig. Drain Eng., 126 (2): 113–118. http://10.1061/(ASCE)0733-9437(2000)126:2(113)
[8] Reddy J. and Apolayo H., 1988. Friction Correction Factor For Center Pivot Irrigation Systems, J. Irrig. Drain Eng., 114 (1): 183–185. http://10.1061/(ASCE)0733-9437(1988)114:1(183)
[9] Valiantzas J. and Dercas N., 2005. Hydraulic Analysis of Multidiameter Center-Pivot Sprinkler Laterals, J. Irrig. Drain Eng., 131 (2): 137–146. http://10.1061/(ASCE)0733-9437(2005)131:2(137)
[10] Tabuada M., 2011. Hydraulics of Center-Pivot Laterals: Complete Analysis of Friction Head Loss, J. Irrig. Drain Eng., 137 (8): 513–523. http://10.1061/(ASCE)IR.1943-4774.0000314
[11] Scaloppi E. and Allen R., 1993. Hydraulics of Center Pivot Laterals, J. Irrig. Drain Eng., 119 (3): 554–567. http://10.1061/(ASCE)0733-9437(1993)119:3(554)
[12] Scaloppi E. and Allen R., 1993. Hydraulics of Irrigation Laterals: Comparative Analysis, J. Irrig. Drain Eng., 119 (1): 91–115. http://10.1061/(ASCE)0733-9437(1993)119:1(91)
[13] Scaloppi E. and Allen R., 1994. Erratum: "Hydraulics of Center Pivot Laterals" (May/June, 1993, Vol. 119, No. 3), J. Irrig. Drain Eng., 120 (2): 465–465. http://10.1061/(ASCE)0733-9437(1994)120:2(465)
[14] Helweg O. 1988, Using Center Pivots for Research, J. Irrig. Drain Eng., 114 (2): 358–363. http://10.1061/(ASCE)0733-9437(1988)114:2(358)
[15] Peters R. and Evett S., 2008. Automation of a Center Pivot Using the Temperature-Time-Threshold Method of Irrigation Scheduling, J. Irrig. Drain Eng., 134 (3); 286–291. http://10.1061/(ASCE)0733-9437(2008)134:3(286)
[16] Mohamoud Y., McCarty T. and Ewing, L., 1992. Optimum Center Pivot Irrigation System Design with Tillage Effects, J. Irrig. Drain Eng., 118 (2): 291–305. http://10.1061/(ASCE)0733-9437(1992)118:2(291)
[17] Spare D., A. Beutler and R. Bliesner, 2006. Field Performance Analysis of Center Pivot Sprinkler Packages, World Environmental and Water Resource Congress 2006 : Examining the Confluence of Environmental and Water Concerns, http://dx.doi.org/10.1061/40856(200)283
[18] Gilley J., 1984. Suitability of Reduced Pressure Center Pivots, J. Irrig. Drain Eng., 110 (1): 22–34. http://10.1061/(ASCE)0733-9437(1984)110:1(22)
[19] Molle B. and Gat Y., 2000. Model of Water Application under Pivot Sprinkler. II: Calibration and Results, J. Irrig. Drain Eng., 126 (6): 348–354. http://10.1061/(ASCE)0733-9437(2000)126:6(348)
[20] Gat Y. and Molle B., 2000. Model of Water Application under Pivot Sprinkler. I: Theoretical Grounds, J. Irrig. Drain Eng., 126 (6): 343–347. http://10.1061/(ASCE)0733-9437(2000)126:6(343)
[21] Yan H.J., Jin H.Z. and Y.C. Qian, 2010. Characterizing center pivot irrigation with fixed spray plate sprinklers, Science China Technological Sciences, 53 (5): 1398-1405. http://10.1007/s11431-010-0090-8
[22] Dukes M.D. and C. Perry, 2006. Uniformity testing of variable-rate center pivot irrigation control systems, Precision Agriculture, 7 (3): 205-218. http://10.1007/s11119-006-9020-y
[23] Marjang N., G.P. Merkley and M. Shaban, 2012. Center-pivot uniformity analysis with variable container spacing, Irrigation Science, 30 (2): 149-156. http://10.1007/s00271-011-0272-6
[24] Silva L.L., 2007. Fitting infiltration equations to centre-pivot irrigation data in a Mediterranean soil, Agricultural Water Management, 94 (1–3): 83–92. http://dx.doi.org/10.1016/j.agwat.2007.08.003
[25] Delirhasannia R., A.A. Sadraddini, A.H. Nazemi, D. Farsadizadeh and E. Playán, 2010. Dynamic model for water application using centre pivot irrigation, Biosystems Engineering, 105 (4): 476–485. http://dx.doi.org/10.1016/j.biosystemseng.2010.01.006
[26] ValÃn M.I., M.R. Cameira, P.R. Teodoro and L.S. Pereira, 2012. DEPIVOT: A model for center-pivot design and evaluation, Computers and Electronics in Agriculture, 87: 159–170. http://dx.doi.org/10.1016/j.compag.2012.06.004
[27] Abo-Ghobar H.M., 1992. Losses from low-pressure center-pivot irrigation systems in a desert climate as affected by nozzle height, Agricultural Water Management, 21 (1–2): 23–32 http://dx.doi.org/10.1016/0378-3774(92)90079-C
[28] Heermann D.F., H.R. Duke and G.W. Buchleiter, 1985. ‘User friendly’ software for an integrated water-energy management system for center pivot irrigation Computers and Electronics in Agriculture, 1 (1): 41–57. http://dx.doi.org/10.1016/0168-1699(85)90005-5
[29] Valipour, M. (2012a) ‘HYDRO-MODULE DETERMINATION FOR VANAEI VILLAGE IN ESLAM ABAD GHARB, IRAN’, ARPN J. Agric. Biol. Sci., Vol. 7, No. 12, pp.968-976.
[30] Valipour, M. (2012b) ‘Ability of Box-Jenkins Models to Estimate of Reference Potential Evapotranspiration (A Case Study: Mehrabad Synoptic Station, Tehran, Iran)’, IOSR J. Agric. Veter. Sci. (IOSR-JAVS), Vol. 1, No. 5, pp.1-11.
[31] Valipour, M. (2012c) ‘A Comparison between Horizontal and Vertical Drainage Systems (Include Pipe Drainage, Open Ditch Drainage, and Pumped Wells) in Anisotropic Soils’, IOSR J. Mech. Civil Eng. (IOSR-JMCE), Vol. 4, No. 1, pp.7-12.
[32] Valipour, M. (2012d) ‘Number of Required Observation Data for Rainfall Forecasting According to the Climate Conditions’, Am. J. Sci. Res., Vol. 74, pp.79-86.
[33] Valipour, M. (2012e) ‘Critical Areas of Iran for Agriculture Water Management According to the Annual Rainfall’, Eur. J. Sci. Res., Vol. 84, No. 4, pp.600-608.
[34] Valipour, M. (2014a) ‘Application of new mass transfer formulae for computation of evapotranspiration’, J. Appl. Water Eng. Res., Vol. 2, No. 1, pp.33-46.
[35] Valipour, M. (2014b) ‘Use of average data of 181 synoptic stations for estimation of reference crop evapotranspiration by temperature-based methods’, Water Res. Manage., Vol. 28, No. 12, pp.4237-4255.
[36] Valipour, M. (2017a) ‘Global experience on irrigation management under different scenarios’, J. Water Land Develop., Vol. 32, No. 1, pp.95-102.
[37] Valipour, M. (2017b) ‘Status of land use change and irrigation in Europe by 2035 and 2060’, J. Water Land Develop., In Press.
[38] Valipour, M. (2017c) ‘Drought analysis in different basins and climates’, Taiwan Water Conservancy, Vol. 65, No. 1, pp.55-63.
[39] Valipour, M. (2017d) ‘A study on irrigated area to analyze Asian water development’ J. Water Land Develop., In Press.
[40] Valipour, M. (2017e) ‘Analysis of potential evapotranspiration using limited weather data’, Appl. Water Sci., Vol. 7, No. 1, pp.187-197.
[41] Valipour, M. (2016a) ‘How Much Meteorological Information Is Necessary to Achieve Reliable Accuracy for Rainfall Estimations?’, Agric., Vol. 6, No. 4, pp.53.
[42] Valipour, M. (2016b) ‘VARIATIONS OF LAND USE AND IRRIGATION FOR NEXT DECADES UNDER DIFFERENT SCENARIOS’, Irriga, Vol. 1, No. 1, pp.262-288.
[43] Valipour, M., Gholami Sefidkouhi, M.A. and Raeini-Sarjaz, M. (2017a) ‘Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events’, Agric. Water Manage., Vol. 180, No. Part A, pp.50-60.
[44] Valipour, M., Gholami Sefidkouhi, M.A. and Khoshravesh, M., (2017b) ‘Estimation and trend evaluation of reference evapotranspiration in a humid region’, Ital. J. Agrometeorol., Vol. 1, pp.19-38. In Press.
[45] Valipour, M. and Gholami Sefidkouhi, M.A. (2017) ‘Temporal analysis of reference evapotranspiration to detect variation factors’, Int. J. Glob. Warm., In Press. http://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijgw#63006
[46] Valipour, M. (2015a) ‘Future of agricultural water management in Africa’, Arch. Agron. Soil Sci., Vol. 61, No. 7, pp.907-927.
[47] Valipour, M. (2015b) ‘Land use policy and agricultural water management of the previous half of century in Africa’, Appl. Water Sci., Vol. 5, No. 4, pp.367-395.
[48] Valipour, M. (2015c) ‘Comparative Evaluation of Radiation-Based Methods for Estimation of Potential Evapotranspiration’, J. Hydrol. Eng., Vol. 20, No. 5, pp.04014068.
[49] Valipour, M. (2015d) ‘Importance of solar radiation, temperature, relative humidity, and wind speed for calculation of reference evapotranspiration’, Arch. Agron. Soil Sci., Vol. 61, No. 2, pp.239-255.
[50] Valipour, M. (2015e) ‘Study of different climatic conditions to assess the role of solar radiation in reference crop evapotranspiration equations’, Arch. Agron. Soil Sci., Vol. 61, No. 5, pp.679-694.
[51] Valipour, M. (2015f) ‘Evaluation of radiation methods to study potential evapotranspiration of 31 provinces’, Meteorol. Atmos. Physic., Vol. 127, No. 3, pp.289-303.
[52] Valipour, M. (2015g) ‘Temperature analysis of reference evapotranspiration models’, Meteorol. Appl., Vol. 22, No. 3, pp.385-394.
[53] Valipour, M. (2015h) ‘Investigation of Valiantzas’ evapotranspiration equation in Iran’, Theoret. Appl. Climatol., Vol. 121, No. (1-2), pp.267-278.
[54] Valipour, M. (2015i) ‘Long-term runoff study using SARIMA and ARIMA models in the United States’, Meteorol. Appl., Vol. 22, No. (3), pp.592-598.
[55] Valipour, M. and Montazar, A.A. (2012) ‘An Evaluation of SWDC and WinSRFR Models to Optimize of Infiltration Parameters in Furrow Irrigation’, Am. J. Sci. Res., Vol. 69, pp.128-142.
[56] Valipour, M. (2013a) ‘INCREASING IRRIGATION EFFICIENCY BY MANAGEMENT STRATEGIES: CUTBACK AND SURGE IRRIGATION’, ARPN J. Agric. Biol. Sci., Vol. 8, No. 1, pp.35-43.
[57] Valipour, M. (2013b) ‘Necessity of Irrigated and Rainfed Agriculture in the World’, Irrig. Drain. Syst. Eng., S9, e001.
[58] Valipour, M. (2013c) ‘Evolution of Irrigation-Equipped Areas as Share of Cultivated Areas’, Irrig. Drain. Syst. Eng., Vol. 2, No. 1, e114.
[59] Valipour, M. (2013d) ‘USE OF SURFACE WATER SUPPLY INDEX TO ASSESSING OF WATER RESOURCES MANAGEMENT IN COLORADO AND OREGON, US’, Adv. Agric. Sci. Eng. Res., Vol. 3, No. 2, pp.631-640.
[60] Valipour, M., Mousavi, S.M., Valipour, R. and Rezaei, E. (2013) ‘A New Approach for Environmental Crises and its Solutions by Computer Modeling’, The 1st International Conference on Environmental Crises and its Solutions, Kish Island, Iran.
[61] Viero, D.P. and Valipour, M. (2017) ‘Modeling anisotropy in free-surface overland and shallow inundation flows’, Adv. Water Resour., Vol. 104, pp.1-14.
[62] Yannopoulos, S.I., Lyberatos, G., Theodossiou, N., Li, W., Valipour, M., Tamburrino, A., Angelakis, A.N., 2015. Evolution of Water Lifting Devices (Pumps) over the Centuries Worldwide. Water. 7 (9), 5031-5060.