• editor.aipublications@gmail.com
  • Track Your Paper
  • Contact Us
  • ISSN: 2456-8635 (NAAS Rating: 3.43)

International Journal Of Horticulture, Agriculture And Food Science(IJHAF)

Growth and Yield of Soybean Direct-seeded following Conventional and Aerobic Rice Intercropped with Peanut and Amended with Organic wastes

Ni Wayan Dwiani Dulur , Wayan Wangiyana , Nihla Farida , I.G.M. Kusnarta


International Journal of Horticulture, Agriculture and Food science(IJHAF), Vol-4,Issue-5, September - October 2020, Pages 189-195, 10.22161/ijhaf.4.5.2

Download | Downloads : 7 | Total View : 1015

Share

Previous studies reported that growing soybean in a dry season following conventional (flooded) rice resulted in lower grain yield compared with following rice cultivated using SRI (system of rice intensification) technique unless it was fertilized with mycorrhiza biofertilizer. This study aimed to examine residual effects of different rice cultivation techniques and organic waste application to the preceding red rice crops on growth and yield components of soybean direct-seeded without tillage following harvest of the preceding rice crop. The experiment on the red rice was arranged according to Split Plot design with three blocks and two treatment factors applied the rice crop, namely rice cultivation techniques as the main plots (T1= conventional, T2= aerobic rice on permanent raised-beds (ARR) without intercropping, T3= ARR + peanut, T4= ARR + peanut + rice straw mulch) and organic wastes applied to the red rice as the subplots (L0= without organic waste, L1= with rice husks, L2= with rice husk ash, L3= with rice husk ash and cattle manure). Results indicated that growth and yield variables of soybean direct-seeded following the red rice crop that showed significant residual effects of both treatment factors applied to the preceding red rice crop were leaf number at 8 weeks after planting, harvest index, grain number and grain yield per clump. Grain yield was highest (18.43 g/clump or 3.69 ton/ha) on soybean plants direct-seeded following aerobic rice grown on permanent raised-bed intercropped with peanut thin covered with rice straw mulch (T4) and amended with rice husk ash and cattle manure (L3), and lowest (8.54 g/clump or 1.71 ton/ha) on soybean plants direct-seeded following conventional rice (T1) without application of organic wastes (L0).

Peanuts, red rice, intercropping, aerobic irrigation systems, row patterns.

[1] Adisarwanto, T., Suhendi, R., Sinaga, M.A. and Ma’shum, M. 1992. Kajian residu pupuk nitrogen untuk padi gora terhadap hasil kedelai yang ditanam setelah padi gora”. In: Suyamto H., Achmad Winarto, Sugiono and Sunardi (Eds), Risalah Seminar Hasil Penelitian Sistem Usahatani di Nusa Tenggara Barat. Balai Penelitian Tanaman Pangan Malang, Malang. [2] Aimon, H., dan Satrianto, A. 2014. Prospek Konsumsi dan Impor Kedelai di Indonesia Tahun 2015 – 2020. Jurnal Kajian Ekonomi, 3(5). http://ejournal.unp.ac.id/index.php/ekonomi/article/view/4157/3304. [3] Aldillah, R. 2015. Proyeksi Produksi dan Konsumsi Kedelai Indonesia. Jurnal Ekonomi Kuantitatif Terapan, 8(1): 9-23. [4] Anderson, J.M., and Ingram, J.S.I. 1993. Tropical Soil Biology and Fertility: A Handbook of Methods. 2nd edition. Wallingford, UK: CAB International. [5] Bellaloui, N., Reddy, K.N., Bruns, H.A., Gillen, A.M., Mengistu, A., Zobiole, L.H.A., Fisher, D.K., Abbas, H.K., Zablotowicz, R.M., and Kremer, R.J. 2011. Soybean Seed Composition and Quality: Interactions of Environment, Genotype, and Management Practices. Pp 1-42. In: Maxwell, J.E. (Ed), Soybeans: Cultivation, Uses and Nutrition. New York, USA: Nova Science Publishers, Inc. [6] Dulur, N.W.D., Wangiyana, W., Farida, F., and Kusnarta, I.G.M. 2019. Improved Growth and Yield Formation of Red Rice under Aerobic Irrigation System and Intercropping with Peanuts. IOSR Journal of Agriculture and Veterinary Science Vol. 12, Issue 8 Ser. I (August 2019), PP 12-17. http://iosrjournals.org/iosr-javs/papers/Vol12-issue8/Series-1/C1208011217.pdf [7] Fustec, J., Lesuffleur, F., Mahieu, S., and Cliquet, J.B. 2010. Nitrogen rhizodeposition of legumes. A review. Agron. Sustain. Dev., 30: 57–66. [8] Ilag, L.L., Rosales, A.M., Elazegui, F.A., and Mew, T.W. 1987. Changes in the population of infective endomycorrhizal fungi in a rice-based cropping system. Plant and Soil, 103:67-73. [9] Inal, A., Gunes, A., Zhang, F., and Cakmak, I. 2007. Peanut/maize intercropping induced changes in rhizosphere and nutrient concentrations in shoots. Plant Physiology and Biochemistry, 45: 350-356. [10] Lu, W., Shen, X., and Chen, Y. 2019. Effects of Intercropping Peanut on Soil Nutrient Status and Microbial Activity within Young Camellia oleifera Plantation. Communications in Soil Science and Plant Analysis, 50(10): 1232-1238. [11] Meghvansi, M.K. and Mahna, S.K. 2009. Evaluating the Symbiotic Potential of Glomus intraradices and Bradyrhizobium japonicum in Vertisol with Two Soybean Cultivars. American-Eurasian Journal of Agronomy, 2: 21-25. [12] Muirhead, W.A., and Humphreys, E. 1996. Rice-based cropping systems in Australia: Constraints to non-rice crops. pp.181-185. In: G. Kirchhof and H.B. So (Eds), Management of Clay Soils for Rainfed Lowland Rice-based Cropping Systems. Canberra, Australia: ACIAR. [13] Sari, V.I. 2015. Pemanfaatan berbagai jenis bahan organik sebagai mulsa untuk pengendalian gulma di areal budidaya tanaman. Jurnal Citra Widya Edukasi, 7(2): 56-62. [14] Sinclair, T.R., and de Wit, C.T. 1975. Photosynthate and nitrogen requirements for seed production by various crops. Science, 189: 565-567. [15] Subandi, Harsono, A., and Kuntyastuti, H. 2013. Areal Pertanaman dan Sistem Produksi Kedelai di Indonesia, p. 104-129. In: Sumarno et al. (Eds), Kedelai: Teknik Produksi dan Pengembangan. Badan Penelitian dan Pengambangan Pertanian, Jakarta, Indonesia. [16] Subramanian, K.S., Jegan, R.A., Gomathy, M., and Vijayakumar, S. 2011. Biochemical and Nutritional Responses of Tripartite Soybean-Rhizobium-Glomus Association Under Low and High P Fertilization. Madras Agric. J., 98: 224-228. [17] Suryana A. 2008. Penganekaragaman pangan dan gizi: faktor pendukung peningkatan kualitas sumberdaya manusia. Majalah Pangan. Media Komunikasi dan Informasi No 52/VXII/Oktober-Desember 2008, Jakarta. [18] Wangiyana, W., and Farida, N. 2019. Application bio-fertilizers to increase yields of zero-tillage soybean of two varieties under different planting distances in dry season on vertisol land of Central Lombok, Indonesia. AIP Conference Proceedings 2199, 040009 (2019); DOI: https://doi.org/10.1063/1.5141296. [19] Wangiyana, W., Cornish, P.S., and Morris, E.C. 2006. Arbuscular Mycorrhizal Fungi Dynamics in Contrasting Cropping Systems on Vertisol and Regosol Soils of Lombok, Indonesia. Experimental Agriculture (Cambridge), 42: 427–439. [20] Wangiyana, W., Cornish, P.S., and Ryan, M.H. 2016. Arbuscular Mycorrhizas in Various Rice Growing Environments and their Implication for Low Soybean Yields on Vertisol Soil in Central Lombok, Indonesia. IOSR - Journal of Environ. Science, Toxicology and Food Technology, 10(12), Ver.III: 51-57. [21] Wangiyana, W., Dulur, N.W.D., and Farida, N. 2019. Mycorrhizal Inoculation to Increase Yield of Soybean Direct-Seeded Following Rice of Different Growing Techniques in Vertisol Soil, Lombok, Indonesia. International Journal of Environment, Agriculture and Biotechnology, 4(3): 884-891. [22] Zhang, K., Zhao, J., Wang, X.Q., Xu, H.S., Zang, H.D., Liu, J.N., Hu, Y.G., Zeng, Z.H. 2019. Estimates on nitrogen uptake in the subsequent wheat by aboveground and root residue and rhizodeposition of using peanut labeled with 15N isotope on the North China Plain. Journal of Integrative Agriculture, 18(3): 571–579.