• editor.aipublications@gmail.com
  • Track Your Paper
  • Contact Us
  • ISSN: 2456-8635

International Journal Of Horticulture, Agriculture And Food Science(IJHAF)

Effects of Cd on Microbial Properties, Enzymatic Activities, Soil pH and Salinity in The Rhizosphere of Medicago sativa

Najia Shwerif


International Journal of Horticulture, Agriculture and Food science(IJHAF), Vol-2,Issue-1, January - February 2018, Pages 32-40, 10.22161/ijhaf.2.1.4

Download | Downloads : 11 | Total View : 1497

Share

Plants have mechanisms for accumulation, tolerance or alleviation of high levels of heavy metals in contaminated soil. Some contaminants can be absorbed by the plants and are then broken down by plant enzymes. The objective of this particular study was measure the potential activities of three enzymes (dehydrogenase, protease and phosphatase) in the alfalfa rhizospheres under the stress at different concentrations of cadmium salts, and inoculated different biofertilizers strains of S. meliloti and coinoculated with Trichoderma strains. As well as pH, NaCl, CaCO3 tolerance and antibiotic resistance were investigated. The results show that the growth rate of sinorhizobial strains decreased with increasing of NaCl and CaCO3 concentration. Sinorhizobial strains grew in environments of pH ranged between5.5-7.5. There was variable response to antibiotic of all sinorhizobial strains. As well it was clearly showed that Cdso4 reduced the activity of phosphatase. Trichoderma harzianum stimulate the enzyme activity more than Trichoderma viride.

Alfalfa, Heavy metals, pH condition, Rhizobioremediation.

[1] Azcón-Bieto J., Fleck I., Aranda X., Xambó A. (2000). Fotosíntesis en un ambiente cambiante. In: J. Azcon-Bieto, M. Talon (eds), Fundamentos de Fisiología Vegetal, McGraw-Hill Interamericana, Madrid, Spain: pp 203-217.
[2] Azcón R., Barea J. M. (1997). Mycorrhizal dependency of a representative plant species in Mediterranean shrub lands (Lavandula spica L.) as a key factor to its use for revegetation strategies in desertification- threatened areas. Appl. Soil Ecol., (7): pp 83-92.
[3] Bayoumi H. E. A. F., Kecskés M. (1998). Tolerance of horse bean- Rhizobium interaction to soil saline-specific ions. Proc. Man-Agriculture-Health, Gȍdȍllȍ University of Agricultural Sciences. Gȍdȍllȍ. pp: 118-132.
[4] Bayoumi H. E. A. F., Nagy T., Kecskés M. (1988). Antibiotic sensitivity of Rhizobium leguminosarum bv. Viceae strains. Acta Biol. Hung. (35): pp 158.
[5] Bayoumi H. E. A. F., Biró B and Kecskés M. (1995a). Some of environmental factors influencing the survival of Rhizobium leguminosarum bv. Viceae. Acta Biol. Hung. (46): pp7-30.
[6] Bayoumi H. E. A. F., Biró B and Kecskés M. (1995b). Effect of some of environmental factors on Rhizobium and Bradyrhizobium strains. Acta Microbial. Immunol. Hung., (42): pp 61-69.
[7] Bolton H. J., Fredrickson J. K., Elliott L. F. (1993). Microbial ecology of the rhizosphere. In: F. B. J. meeting (ed.), Soil Microbial Ecology. Marcel Dekker, New York : pp 27-63.
[8] Brookes P. C., McGrath S. P. (1984) Effects of metal toxicity on the size of the soil microbial biomass. J. Soil Sci. (35): pp 341–346.
[9] Camprubi A., Calvet C., Estaún V. (1995). Growth enhancement of Citrus reshni after inoculation with Glomus intraradices and Trichoderma aureoviride and associated effects on microbial populations and enzyme activity in potting mixes. Plant Soil, (173): pp 233-238.
[10] Chander K., Brookes P. C., Harding S. A. (1995). Microbial biomass dynamics following addition of metal- enriched sewage sludges to a sandy loam, Soil Biol. Biochem., (27): pp 1049-1421.
[11] Del Papa M. F., Balagué L. J., Sowinski S. C., Wegener C., Segundo E., Martínez-Abarca F., Toro N., Niehaus K., Pühler A., Aguilar O. M., Martínez-Drests G., Lagares A. (1999). Isolation and characterization of alfalfa- nodulating rhizobia present in acid soils of Central Argentina and Uruguay. Appl. Environ. Microbial, (65): pp 1420-1427.
[12] Dick R. P., Breakwill D., Turco R. (1996). Soil enzyme activities and biodiversity measurements as integrating biological indicators. In: J. W. Doran, A. J. Jones (eds), Handbook of Methods for Assessment of Soil Quality, Soil Science Society of America Specific Publications, Madison, WI.: pp 242-272.
[13] Eisler R. (1985). Cadmium Hazards to Fish, Wildlife and Invertebrates: a Synoptic Review. Contaminant Hazard Review Report 2 U.S. Dep. Int. Biological Report, (85): pp 1-2.
[14] Ellis R. J., Morgan P., Weightman A. J., Fry J. C. (2003). Cultivation-dependent and independent approaches for determining bacterial diversity in heavy-metal contaminated soil. Appl. Environ. Microbial, (69): pp 3223-3230.
[15] El-Motaium R. A., Badawy S. H. (2000). Effect of irrigation using sewage water on the distribution of some heavy metals in bulk and rhizosphere soil and different plant species: cabbage plants (Brassica oleracea L.) and orange trees (Citrus sinensis L.). Egypt. J. Soil Sci., (40): pp 285-303.
[16] García C., Hernández T., Costa F., Ceccanti B., Masciandaro G., (1993).The dehydrogenase activity of soil as an ecological marker in processes of perturbed system regeneration. In: Proceedings of the XI International Symposium of Environmental Biochemistry (Gallardo-Lancho J., ed). CSIC, Salamanca, España: pp 89-100.
[17] Giller K. E., Witter E., McGrath S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils. Soil Bio.Biochem, (30): pp 1389-1414.
[18] Glenn A. R., Dilworth M. J. (1994). The life of root nodule bacteria in the acidic underground. FEMS Microbial. Lett. (123): pp 1-10.
[19] Graham P. H. (1992). Stress tolerance in Rhizobium and Bradyrhizobium and nodulation under adverse soil conditions. Can. J. Microbial., 38: pp 475- 484.
[20] Howieson J. G., Robson A. D., Abbott L. K. (1992). Calcium modifies pH effects on the growth of acid-tolerant and acid-sensitive Rhizobium meliloti. Aust. J. Agric. Res., (43): pp 765-772.
[21] Kandeler E., Kampichler C., Horak O. (1996). Influence of heavy metals on the functional diversity of soil microbial communities. Biol. Fert. Soils, (23): pp 299-306.
[22] Lee I. S., Kim O. K., Changn Y. Y., Bae B., Kim H. H., Baek K. H. (2002). Heavy metal concentrations and enzyme activities in soil from a contaminated Korean shooting range, J. Biosci. Bioengineer, (94): pp 406-411.
[23] Majer B. J., Tscherko D., Paschke A., Wennrich R., Kundi M., Kandeler E., Knasmüller S. (2002). Effects of heavy metal contamination on micronucleus induction in Traescania and on microbial enzyme activities: a comparative investigation, Mutation Res., 515: pp 111-124.
[24] Mellor R. B. (1992). Is trehalose a symbiotic determinant in symbioses between higher plants and microorganisms? Symbiosis, (12): pp 113-129.
[25] Nannipieri P., Ceccanti B., Cervelli S and Matarese E. (1980). Extraction of phosphatase, Urease, Protease, Organic Carbon, and Nitrogen from soil. Soil Sci. Soc. Am. J., (44): pp 1001 – 1016.
[26] Naseby D. C., Lynch J. M. (1998). Impact of wild-type and genetically modified Pseudomonas fluorescens on soil enzyme activities and microbial population structure in the rhizosphere of pea. Mol. Ecol., (7): pp 617-625.
[27] Naseby D. C., Pascual J. A., Lynch J. M. (1999). Carbon fractions in the rhizosphere of pea inoculated with 2, 4 diacetylphloroglucinol producing and non-producing Pseudomonas fluorescens F133. J. Appl. Microbial., (87): pp 173-181.
[28] Pankhurst C. E., Hawke B. G., McDonald H. J., Kirkby C. A., Buckerfield J. C., Michelsen P., O'Brien K. A., Gupta V. S. R., Doube B. M. (1995). Evaluation of soil biological properties as potential bioindicators of soil health. Aust. J. Exper. Agron. (35): pp 1015-1028.
[29] Reeves W. G., Tiwari R. P., Dilworth M. J., Glenn A. R. (1993). Calcium affects the growth and survival of Rhizobium meliloti. Soil Biol. Biochem., (25): pp 581-586.
[30] Schubert S., Serraj R., Plies-Balzer E., Mengel K. (1995). Effect of drought stress on growth, sugar concentrations and amino acid accumulation in N2-fixing alfalfa. J. Plant Physiol., (146): pp 541- 546.
[31] Shore R., Douben P. (1994). The ecotoxicological significance of cadmium intake and residues in terrestrial small mammals. Ecotoxicol. Environ. Safe. (29) : pp 101-112.
[32] Shwerif N. (2018). Role of Trichoderma and Sinorhizobium Strains for Improving Growth and Nutritional Status of Alfalfa under Cd Stress, International Journal of Environment, Agriculture and Biotechnology, (3 ): pp 33-48
[33] Soto J, M., Van Dillewijn P., MArtínez-Abarca F., Jiménez-Zurdo J. I., Toro N., (2004). Attachment to plant roots and nod gene expression are affected by pH or calcium in the acid-tolerant alfalfa-nodulating bacteria Rhizobium sp. LPU83. FEMS Microbial. Ecol., (48): pp 71-77.
[34] Tabatabai M. A., Bremner J. M. (1969): Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, (1): pp 301-307.
[35] Tadano T., Ozowa K., Satai M., Osak M., Matsui H. (1993). Secretion of acid phosphatase by the roots of crop plants under phosphorus-deficient conditions and some properties of the enzyme secreted by lupine roots. Plant and soil, (156): pp 95-98.
[36] Vincent, J. M. (1970). A Manual for the Practical Study of Root Nodule Bacteria. Oxford: Blackwell Scientific.
[37] Von Uexküll H. R., Mutert E. (1995). Global extent, development and economic impact of acid soils. Plant and soil, (171): pp 1-15.
[38] Walsh K. B. (1995). Physiology of the legume nodule and its response to stress, Soil Biol. Biochem., (27): pp 637-655.
[39] Zahran H. H. (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbial. Mol. Biol. Rev., (63): pp 968-989.