• editor.aipublications@gmail.com
  • Track Your Paper
  • Contact Us
  • ISSN: 2456-8635

International Journal Of Horticulture, Agriculture And Food Science(IJHAF)

Effect of Clariodeoglomusclariodeorum on morphology and abundant of carrot root hairs in vitro

Nikoo Rokni , Seyed Esmaeil Razavi , Kambiz Mashayekhi


International Journal of Horticulture, Agriculture and Food science(IJHAF), Vol-2,Issue-3, May - June 2018, Pages 32-38, 10.22161/ijhaf.2.3.2

Download | Downloads : 15 | Total View : 1128

Share

The roothairs are important components of the root for absorbing nutrients for plants and also secreting the plant-produced secretes. Morphology and their number are influenced by various environmental and internal factors and are regulated by them. Mycorrhizal fungi are established through the root and their presence in the root can affect root’s physical and chemical properties.The aim of this study was to evaluate the effect of the presence of the fungus in the roots on the characteristics of the capillary roots.In order to remove the effect of other microorganisms on the results of the experiment, this experiment was performed in vitro on the roots of the carrot secondary phloem tissue culture. In this experiment, the fungus could affect the characteristics of the root hairs: their number (22% decrease in the root hairs number in the root hair area of the root) and their length (A decrease of 21.3% in the length of capillary roots in mycorrhizal plants). These changes in the characteristics of capillary roots were also caused by the presence of fungal structures in the roots as well as by the decrease in the production of strigolactones. In this study, changes in the production of strigolactones calculated by using their effect on seed germination of Phelipancheaegyptiaca.

Phelipancheaegyptiaca, Strigolactones, Capillary root’s length.

[1] Akiyama, K., Tanigawa, F., Kashihara, T., & Hayashi, H. (2010). Lupin pyranoisoflavones inhibiting hyphal development in arbuscular mycorrhizal fungi. Phytochemistry, 71(16), 1865-1871.
[2] Aroca, R., Ruiz-Lozano, J. M., Zamarreño, Á. M., Paz, J. A., García-Mina, J. M., Pozo, M. J., & López-Ráez, J. A. (2013). Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. Journal of Plant Physiology, 170(1), 47-55.
[3] Augé, R. M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11(1), 3-42.
[4] Baldwin, J. P., Tinker, P. B., & Nye, P. H. (1972). Uptake of solutes by multiple root systems from soil II. The theoretical effects of rooting density and pattern on uptake of nutrients from soil. Plant and Soil, 693-708.
[5] Barber, S. A. (1995). Soil nutrient bioavailability: a mechanistic approach. New York.: Wiley-Interscience.
[6] Baylis, G. T. (1970). Root hairs and phycomycetous mycorrhizas in phosphorus-deficient soil. Plant and soil, 33(1-3), 713-716.
[7] Crush, J. R. (1974). PLANT GROWTH RESPONSES TO VESICULAR‐ARBUSCULAR MYCORRHIZA VII. GROWTH AND MODULATION OF SOME HERBAGE LEGUMES. New phytologist, 73(4), 743-749.
[8] Fernandez-Aparicio, M., GArcia-Garrido, J. M., Ocampo, J. A., & Rubiales, D. (2010). Colonisation of field pea roots by arbuscular mycorrhizal fungi reduces Orobanche and Phelipanche species seed germination. Weed research, 50(3), 262-268.
[9] Gange, A. C., & West, H. M. (1994). Interactions between arbuscular mycorrhizal fungi and foliar‐feeding insects in Plantago lanceolata L. New Phytologist, 128(1), 79-87.
[10] Gomez-Roldan, V., Fermas, S., Brewer, P. B., Puech-Pagès, V., Dun, E. A., Pillot, J. P., . . . Bouwmeester, H. (2008). Strigolactone inhibition of shoot branching. Nature, 455(7210), 189.
[11] Grime, J. P., Mackey, J. M., Hillier, S. H., & Read, D. J. (1987). Floristic diversity in a model system using experimental microcosms. Nature, 328(6129), 420.
[12] Hayman, D. S. (1983). The physiology of vesicular–arbuscular endomycorrhizal symbiosis. canadian Journal of Botany, 61(3), 944-963.
[13] Heidstra, R., Yang, W. C., Yalcin, Y., Peck, S., Emons, A., & Bisseling, T. (1997). Ethylene provides positional information on cortical cell division but is not involved in Nod factor-induced root hair tip growth in Rhizobium-legume interaction. Development, 124(9), 1781-1787.
[14] Hetrick, B. A. (1991). Mycorrhizas and root architecture. Experientia, 47(4), 355-362.
[15] Joner, E. J., Briones, R., & Leyval, C. (2000). Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant and soil, 226(2), 227-234.
[16] Kapulnik, Y., Delaux, P. M., Resnick, N., Mayzlish-Gati, E., Wininger, S., Bhattacharya, C., . . . Beeckman, T. (2011). Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta, 233(1), 209-216.
[17] Khan, A. G., Kuek, C., Chaudhry, T. M., Khoo, C. S., & Hayes, W. J. (2000). Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, 41(1-2), 197–207.
[18] Klironomos, J. N. (2003). Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology, 84, 2292–2301.
[19] Lee, M. R., Tu, C., Chen, X., & Hu, S. (2014). Arbuscular mycorrhizal fungi enhance P uptake and alter plant morphology in the invasive plant Microstegium vimineum. Biological invasions, 16(5), 1083-1093.
[20] Manjunath, A., & Habte, M. (1991). Root morphological characteristics of host species having distinct mycorrhizal dependency. Canadian Journal of Botany, 69(3), 671-676.
[21] Oldroyd, G. E. (2013). Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nature Reviews Microbiology, 11(4), 252.
[22] Rubio, V., Bustos, R., Irigoyen, M. L., Cardona-López, X., Rojas-Triana, M., & Paz-Ares, J. (2009). Plant hormones and nutrient signaling. Plant molecular biology, 69(4), 361.
[23] Ruyter-Spira, C. K., van Zeijl, A., van Bezouwen, L., de Ruijter, N., ..., & Verstappen, F. (2011). Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant physiology,, 155(2), 721-734.
[24] Schusler, A., Schwarzott, D., & Walker, C. (2001). A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycological research, 105(12), 1413-1421.
[25] Schweiger, P. F., Robson, A. D., & Barrow, N. J. (1995). Root hair length determines beneficial effect of a Glomus species on shoot growth of some pasture species. New Phytologist, 131(2), 247-254.
[26] Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis. Academic press.
[27] Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., Takeda-Kamiya, N., . . . Kyozuka, J. (2008). Inhibition of shoot branching by new terpenoid plant hormones. Nature, 455(7210), 195.
[28] Van Der Heijden, M. G. (2004). Arbuscular mycorrhizal fungi as support systems for seedling establishment in grassland. Ecology letters, 7(4), 293-303.
[29] Van Der Heijden, M. G., Streitwolf‐Engel, R., Riedl, R., Siegrist, S., Neudecker, A., Ineichen, K., . . . Sanders, I. R. (2006). The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytologist, 172(4), 739-752.
[30] Vogel, J. T., Walter, M. H., Giavalisco, P., Lytovchenko, A., Kohlen, W., Charnikhova, T., . . . Fernie, A. R. (2010). SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza‐induced apocarotenoid formation in tomato. The Plant Journal, 61(2), 300-311.