• editor.aipublications@gmail.com
  • Track Your Paper
  • Contact Us
  • ISSN: 2456-8635 (NAAS Rating: 3.43)

International Journal Of Horticulture, Agriculture And Food Science(IJHAF)

Current trends and emerging technologies in biopigment production processes: Industrial food and health applications

Dimou Charalampia , Koutelidakis Ε. Antonios , Nasopoulou Constantina , Karantonis C. Haralabos


International Journal of Horticulture, Agriculture and Food science(IJHAF), Vol-1,Issue-2, July - August 2017, Pages 33-46,

Download | Downloads : 7 | Total View : 1636

Share

Recently, driven by the need of finding eco-friendlier and less hazardous pigments than synthetic colorants there is an increasing trend towards their replacement with biopigments. Various types of these biopolymers(such as astaxanthin, canthaxanthin, zeaxanthin, ankaflavin, torularhodin and so on) are produced through the development of proper and efficient bioprocesses. In this review current biocolorants production processes are highlighted. Also, emphasis is given in exploring potential strategies for optimizing biopigments production processes as well as decreasing their total production costs. Therefore, investigation of potential value added biopigment production using various types of agroindustrial by-product streams as well as presentation of efficient extraction, recovery and identification processes and technologies(employing emerging technologies such as supercritical carbon dioxide (SC-CO2)) are carried out. Finally, potential applications of microbial pigments in industrial food and health sector are presented. Biopigments could lead to the production of nutrient supplements and functional food, with improved marketability, displaying various potential health benefits. Use of microbial pigments in food processing and pharmaceutical sector, is an area of promise with large economic potential for several industrial applications.

biopigments, downstream processes, emerging technologies, functional food, industrial applications

[1] Abdelhafez, A. A., Husseiny, S. M., Abdel-Aziz Ali, A., & Sanad, H. M. (2016). Optimization of β-carotene production from agro-industrial by-products by Serratia marcescens ATCC 27117 using Plackett Burman design and central composite design. Annals of Agricultural Sciences, 61(1), 87–96. https://doi.org/10.1016/j.aoas.2016.01.005
[2] Aksu, Z., & Eren, A. T. (2007). Production of carotenoids by the isolated yeast of Rhodotorula glutinis. Biochemical Engineering Journal, 35(2), 107–113. https://doi.org/10.1016/j.bej.2007.01.004
[3] Almeida, E. R. A., & Cerdá-Olmedo, E. (2008). Gene expression in the regulation of carotene biosynthesis in Phycomyces. Current Genetics, 53(3), 129–137. https://doi.org/10.1007/s00294-007-0170-x
[4] Amchova, P., Kotolova, H., & Ruda-Kucerova, J. (2015). Health safety issues of synthetic food colorants. Regulatory Toxicology and Pharmacology, 73(3), 914–922. https://doi.org/10.1016/j.yrtph.2015.09.026
[5] Antonisamy, P., Kannan, P., Aravinthan, A., Duraipandiyan, V., Valan Arasu, M., Ignacimuthu, S., … Kim, J.-H. (2014). Gastroprotective Activity of Violacein Isolated from Chromobacterium violaceum on Indomethacin-Induced Gastric Lesions in Rats: Investigation of Potential Mechanisms of Action. The Scientific World Journal, 2014, 1–10. https://doi.org/10.1155/2014/616432
[6] Ashoori, M., & Saedisomeolia, A. (2014). Riboflavin (vitamin B2) and oxidative stress: a review. British Journal of Nutrition, 111(11), 1985–1991. https://doi.org/10.1017/S0007114514000178
[7] Babitha, S. (2009). Microbial Pigments. In P. S. nee’Nigam & A. Pandey (Eds.), Biotechnology for Agro-Industrial Residues Utilisation (pp. 147–162). Springer Netherlands. https://doi.org/10.1007/978-1-4020-9942-7_8
[8] Bakosova, A., Mate, D., Laciakova, A., & Pipova, M. (2001a). Utilization of Monascus purpureus in the production of foods of animal origin. Bulletin of the Veterinary Institute in Puławy, 45(1). Retrieved from http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.agro-article-f2baf412-067e-4c7b-a134-377166c0e56c
[9] Bakosova, A., Mate, D., Laciakova, A., & Pipova, M. (2001b). Utilization of Monascus purpureus in the production of foods of animal origin. Bulletin of the Veterinary Institute in Puławy, 45. Retrieved from https://www.infona.pl/resource/bwmeta1.element.agro-article-f2baf412-067e-4c7b-a134-377166c0e56c
[10] Capozzi, V., Menga, V., Digesu?, A. M., De Vita, P., van Sinderen, D., Cattivelli, L., … Spano, G. (2011). Biotechnological Production of Vitamin B2-Enriched Bread and Pasta. Journal of Agricultural and Food Chemistry, 59(14), 8013–8020. https://doi.org/10.1021/jf201519h
[11] Cardoso, L. A. C., Jackel, S., Karp, S. G., Framboisier, X., Chevalot, I., & Marc, I. (2016). Improvement of Sporobolomyces ruberrimus carotenoids production by the use of raw glycerol. Bioresource Technology, 200, 374–379. https://doi.org/10.1016/j.biortech.2015.09.108
[12] Cerda-Olmedo, E. (2001). Phycomyces and the biology of light and color. FEMS Microbiology Reviews, 25(5), 503–512. https://doi.org/10.1111/j.1574-6976.2001.tb00588.x
[13] Chen, F., Zhu, L., Zhu, M., Xie, L., & Chen, M. (2011, December). Having a lower blood pressure function red yeast rice wine. Retrieved from http://www.google.com.ar/patents/CN101333483B
[14] Chew, B. P., Mathison, B. D., Hayek, M. G., Massimino, S., Gregory, A. R., & Jean Soon, P. (2011). Dietary astaxanthin enhances immune response in dogs - dietary-astaxanthin-enhances-immune-response-in-dogs_1486634623.pdf. Veterinary Immunology and Immunopathology, 140, 199–206.
[15] Chiu, C.-H., Ni, K.-H., Guu, Y.-K., & Pan, T.-M. (2006). Production of red mold rice using a modified Nagata type koji maker. Applied Microbiology and Biotechnology, 73(2), 297–304. https://doi.org/10.1007/s00253-006-0457-8
[16] Choi, S. Y., Yoon, K., Lee, J. I., & Mitchell, R. J. (2015). Violacein: Properties and Production of a Versatile Bacterial Pigment. BioMed Research International, 2015, 1–8. https://doi.org/10.1155/2015/465056
[17] Dias, C., Sousa, S., Caldeira, J., Reis, A., & Lopes da Silva, T. (2015). New dual-stage pH control fed-batch cultivation strategy for the improvement of lipids and carotenoids production by the red yeast Rhodosporidium toruloides NCYC 921. Bioresource Technology, 189, 309–318. https://doi.org/10.1016/j.biortech.2015.04.009
[18] Dimou, C., & Koutelidakis, A. (2016a). Grape Pomace: A Challenging Renewable Resource of Bioactive Phenolic Compounds with Diversified Health Benefits. MOJ Food Processing & Technology, 3(1). https://doi.org/10.15406/mojfpt.2016.03.00065
[19] Dimou, C., & Koutelidakis, E. A. (2016b). Value added alternatives of winemaking process residues: A health based oriented perspective, 2(3). Retrieved from https://bioaccent.org/biotechnology/biotechnology16.pdf
[20] Dimou, C., & Koutelidakis, E. A. (2017). From pomegranate processing by-products to innovative value added functional ingredients and bio-based products with several applications in food sector, 3(1), 1–7.
[21] Dufosse, L. (2006). Microbial production of food grade pigments, 44(3), 313–321.
[22] EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). (2012). Scientific Opinion on the re-evaluation of mixed carotenes (E 160a (i)) and beta-carotene (E 160a (ii)) as a food additive: Re-evaluation of mixed carotenes (E 160a (i)) and ?-carotene (E 160a (ii)) as food additives. EFSA Journal, 10(3), 2593. https://doi.org/10.2903/j.efsa.2012.2593
[23] Elkenawy, N. M., Yassin, A. S., Elhifnawy, H. N., & Amin, M. A. (2017). Optimization of prodigiosin production by Serratia marcescens using crude glycerol and enhancing production using gamma radiation. Biotechnology Reports, 14, 47–53. https://doi.org/10.1016/j.btre.2017.04.001
[24] Fang, M.-Y., Zhang, C., Yang, S., Cui, J.-Y., Jiang, P.-X., Lou, K., … Xing, X.-H. (2015). High crude violacein production from glucose by Escherichia coli engineered with interactive control of tryptophan pathway and violacein biosynthetic pathway. Microbial Cell Factories, 14(1). https://doi.org/10.1186/s12934-015-0192-x
[25] Gharibzahedi, S. M. T., Razavi, S. H., Mousavi, S. M., & Moayedi, V. (2012). High efficiency canthaxanthin production by a novel mutant isolated from Dietzia natronolimnaea HS-1 using central composite design analysis. Industrial Crops and Products, 40, 345–354. https://doi.org/10.1016/j.indcrop.2012.03.030
[26] Guedes, A. C., Amaro, H. M., & Malcata, F. X. (2011). Microalgae as Sources of Carotenoids. Marine Drugs, 9(12), 625–644. https://doi.org/10.3390/md9040625
[27] Guo, J., Rao, Z., Yang, T., Man, Z., Xu, M., & Zhang, X. (2014). High-level production of melanin by a novel isolate of Streptomyces kathirae. FEMS Microbiology Letters, 357(1), 85–91. https://doi.org/10.1111/1574-6968.12497
[28] Heer, K., & Sharma, S. (2017). Microbial pigments as a natural color: A REVIEW - ProQuest, 8(5), 1913–1922.
[29] Hirasawa, K., & Tsubokura, A. (2014, October). Method for separating carotenoid. Retrieved from http://www.google.ch/patents/US8853460
[30] Hsu, L.-C., Hsu, Y.-W., Liang, Y.-H., Kuo, Y.-H., & Pan, T.-M. (2011). Anti-tumor and Anti-inflammatory Properties of Ankaflavin and Monaphilone A from Monascus purpureus NTU 568. Journal of Agricultural and Food Chemistry, 59(4), 1124–1130. https://doi.org/10.1021/jf103652n
[31] Juarez del Valle, M., Laiño, J. E., Savoy de Giori, G., & LeBlanc, J. G. (2014). Riboflavin producing lactic acid bacteria as a biotechnological strategy to obtain bio-enriched soymilk. Food Research International, 62, 1015–1019. https://doi.org/10.1016/j.foodres.2014.05.029
[32] Khanafari, A., Assadi, M. M., & Fakhr, F. A. (2006). Review of Prodigiosin, Pigmentation in Serratia marcescens. OnLine Journal of Biological Sciences, 6(1), 1–13. https://doi.org/10.3844/ojbsci.2006.1.13
[33] Kim, H. W., Kim, J. B., Cho, S. M., Chung, M. N., Lee, Y. M., Chu, S. M., … Lee, D. J. (2012). Anthocyanin changes in the Korean purple-fleshed sweet potato, Shinzami, as affected by steaming and baking. Food Chemistry, 130(4), 966–972. https://doi.org/10.1016/j.foodchem.2011.08.031
[34] Kot, A. M., Błażejak, S., Kurcz, A., Gientka, I., & Kieliszek, M. (2016). Rhodotorula glutinis-potential source of lipids, carotenoids, and enzymes for use in industries. Applied Microbiology and Biotechnology, 100(14), 6103–6117. https://doi.org/10.1007/s00253-016-7611-8
[35] Lapenda, J. C., Silva, P. A., Vicalvi, M. C., Sena, K. X. F. R., & Nascimento, S. C. (2015). Antimicrobial activity of prodigiosin isolated from Serratia marcescens UFPEDA 398. World Journal of Microbiology and Biotechnology, 31(2), 399–406. https://doi.org/10.1007/s11274-014-1793-y
[36] LeBlanc, J. G., Milani, C., de Giori, G. S., Sesma, F., van Sinderen, D., & Ventura, M. (2013). Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Current Opinion in Biotechnology, 24(2), 160–168. https://doi.org/10.1016/j.copbio.2012.08.005
[37] Li, H. B., Fan, K. W., & Chen, F. (2006). Isolation and purification of canthaxanthin from the microalgaChlorella zofingiensis by high-speed counter-current chromatography. Journal of Separation Science, 29(5), 699–703. https://doi.org/10.1002/jssc.200500365
[38] Li, L., Shao, Y., Li, Q., Yang, S., & Chen, F. (2010). Identification of Mga1, a G-protein subunit gene involved in regulating citrinin and pigment production in Monascus ruber M7: Mga1 related to safety of Monascus products. FEMS Microbiology Letters, 308(2), 108–114. https://doi.org/10.1111/j.1574-6968.2010.01992.x
[39] Lin, Y.-L., Wang, T.-H., Lee, M.-H., & Su, N.-W. (2008). Biologically active components and nutraceuticals in the Monascus-fermented rice: a review. Applied Microbiology and Biotechnology, 77(5), 965–973. https://doi.org/10.1007/s00253-007-1256-6
[40] Lopes, S. C. P., Blanco, Y. C., Justo, G. Z., Nogueira, P. A., Rodrigues, F. L. S., Goelnitz, U., … Costa, F. T. M. (2009). Violacein Extracted from Chromobacterium violaceum Inhibits Plasmodium Growth In Vitro and In Vivo. Antimicrobial Agents and Chemotherapy, 53(5), 2149–2152. https://doi.org/10.1128/AAC.00693-08
[41] Lu, Y., Wang, L., Xue, Y., Zhang, C., Xing, X.-H., Lou, K., … Su, Z. (2009). Production of violet pigment by a newly isolated psychrotrophic bacterium from a glacier in Xinjiang, China. Biochemical Engineering Journal, 43(2), 135–141. https://doi.org/10.1016/j.bej.2008.09.009
[42] Maheswarappa, G., Kavitha, D., Vijayarani, K., & Kumanan, K. (2013). Prodigiosin as anticancer drug produced from bacteria of termite gut, 3(1), 257–266.
[43] Mäki-Arvela, P., Hachemi, I., & Murzin, D. Y. (2014). Comparative study of the extraction methods for recovery of carotenoids from algae: extraction kinetics and effect of different extraction parameters: Extraction of carotenoids from algae. Journal of Chemical Technology & Biotechnology, 89(11), 1607–1626. https://doi.org/10.1002/jctb.4461
[44] Mamucod, H. F., & Dizon, E. I. (2014). Potential of biopigments from Monascus purpureus Went as natural food colorant for Philippine Native Sausage (Longganisa), 71. https://doi.org/107763
[45] Mantzouridou, F., Naziri, E., & Tsimidou, M. Z. (2008). Industrial Glycerol as a Supplementary Carbon Source in the Production of ?-Carotene by Blakeslea trispora. Journal of Agricultural and Food Chemistry, 56(8), 2668–2675. https://doi.org/10.1021/jf703667d
[46] Mapari, S. A., Nielsen, K. F., Larsen, T. O., Frisvad, J. C., Meyer, A. S., & Thrane, U. (2005). Exploring fungal biodiversity for the production of water-soluble pigments as potential natural food colorants. Current Opinion in Biotechnology, 16(2), 231–238. https://doi.org/10.1016/j.copbio.2005.03.004
[47] Marcias-Sanchez, M. D., Serrano, C. M., Rodriguez, M. R., & Martinez de la Ossa, E. (2009). Kinetics of the supercritical fluid extraction of carotenoids from microalgae with CO2 and ethanol as cosolvent. Chemical Engineering Journal, 150(1), 104–113. https://doi.org/10.1016/j.cej.2008.12.006
[48] Marova, I., Carnecka, M., Halienova, A., Certik, M., Dvorakova, T., & Haronikova, A. (2012). Use of several waste substrates for carotenoid-rich yeast biomass production. Journal of Environmental Management, 95, S338–S342. https://doi.org/10.1016/j.jenvman.2011.06.018
[49] Masuelli, L., Pantanella, F., La Regina, G., Benvenuto, M., Fantini, M., Mattera, R., … Bei, R. (2016). Violacein, an indole-derived purple-colored natural pigment produced by Janthinobacterium lividum, inhibits the growth of head and neck carcinoma cell lines both in vitro and in vivo. Tumor Biology, 37(3), 3705–3717. https://doi.org/10.1007/s13277-015-4207-3
[50] Mata-Gomez, L.-C., Montanez, J.-C., Mendez-Zavala, A., & Aguilar, C.-N. (2014). Biotechnological production of carotenoids by yeasts: an overview. Microbial Cell Factories, 13(1), 12. https://doi.org/10.1186/1475-2859-13-12
[51] Matthaus, F., Ketelhot, M., Gatter, M., & Barth, G. (2014). Production of Lycopene in the Non-Carotenoid-Producing Yeast Yarrowia lipolytica. Applied and Environmental Microbiology, 80(5), 1660–1669. https://doi.org/10.1128/AEM.03167-13
[52] Millao, S., & Uquiche, E. (2016). Extraction of oil and carotenoids from pelletized microalgae using supercritical carbon dioxide. The Journal of Supercritical Fluids, 116, 223–231. https://doi.org/10.1016/j.supflu.2016.05.049
[53] Moline, M., Libkind, D., & van Broock, M. (2012). Production of Torularhodin, Torulene, and ?-Carotene by Rhodotorula Yeasts. In J.-L. Barredo (Ed.), Microbial Carotenoids From Fungi (Vol. 898, pp. 275–283). Totowa, NJ: Humana Press. https://doi.org/10.1007/978-1-61779-918-1_19
[54] Muckherjee, P., Camellia, N., Khatoon, N., & Ruma, P. (2015). Mixed algal diet for skin colour enhancement of ornamental fishes. Journal of Algal Biomass Utilization, 6(4), 35–46.
[55] Neeraj, N., Neera, M., & Sayan, C. (2011). Indian Journals. Trends in Bioscience, 4(2), 157–160.
[56] Nigam, P. S., & Luke, J. S. (2016). Food additives: production of microbial pigments and their antioxidant properties. Current Opinion in Food Science, 7, 93–100. https://doi.org/10.1016/j.cofs.2016.02.004
[57] Pan, J.-L., Wang, H.-M., Chen, C.-Y., & Chang, J.-S. (2012). Extraction of astaxanthin from Haematococcus pluvialis by supercritical carbon dioxide fluid with ethanol modifier: Supercritical CO2 fluid extraction of astaxanthin from microalgae. Engineering in Life Sciences, 12(6), 638–647. https://doi.org/10.1002/elsc.201100157
[58] Papaioannou, E. H., & Liakopoulou-Kyriakides, M. (2012). Agro-food wastes utilization by Blakeslea trsipora for carotenoids production, 59, 151–153.
[59] Park, J., Chyun, J., Kim, Y., Line, L. L., & Chew, B. P. (2010). Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans. Nutrition & Metabolism, 7(1), 18. https://doi.org/10.1186/1743-7075-7-18
[60] Parmar, M., & Gupta Phutela, U. (2015). Biocolors: The New Generation Additives (PDF Download Available). International Journal of Current Microbiology and Applied Sciences, 4, 688–694.
[61] Pennachi, M., Rodriguez-Fernadez, D. E., Vendruscolo, F., Maranho, T. L., Marc, I., & Da Costa Cardoso, L. A. (2015). A comparison of cell disruption procedures for the recovery of intracellular carotenoids from Sporobolomyces ruberrimus H110., 6(1). Retrieved from http://imsear.li.mahidol.ac.th/bitstream/123456789/168452/1/ijabpt2015v6n1p136.pdf
[62] Pribyl, P., Cepak, V., Kastanek, P., & Zachleder, V. (2015). Elevated production of carotenoids by a new isolate of Scenedesmus sp. Algal Research, 11, 22–27. https://doi.org/10.1016/j.algal.2015.05.020
[63] Pyo, Y., & Lee, T. (2007). The Potential Antioxidant Capacity and Angiotensin I-Converting Enzyme Inhibitory Activity of Monascus-Fermented Soybean Extracts: Evaluation of Monascus-Fermented Soybean Extracts as Multifunctional Food Additives. Journal of Food Science, 72(3), S218–S223. https://doi.org/10.1111/j.1750-3841.2007.00312.x
[64] Raja, R., Hemaiswarya, S., & Rengasamy, R. (2007). Exploitation of Dunaliella for β-carotene production. Applied Microbiology and Biotechnology, 74(3), 517–523. https://doi.org/10.1007/s00253-006-0777-8
[65] Rao, R. A., Reddy, H., & Aradhya, S. (2010). Antibacterial properties of Spirulina platensis, Haematococcus pluvialis, Botryococcus braunii micro algal extracts | Association of Biotechnology and Pharmacy, 4(3), 809–819.
[66] Reyes, F. A., Mendiola, J. A., Ibanez, E., & del Valle, J. M. (2014). Astaxanthin extraction from Haematococcus pluvialis using CO2-expanded ethanol. The Journal of Supercritical Fluids, 92, 75–83. https://doi.org/10.1016/j.supflu.2014.05.013
[67] Ribeiro, B. D., Barreto, D. W., & Coelho, M. A. Z. (2011). Technological Aspects of β-Carotene Production. Food and Bioprocess Technology, 4(5), 693–701. https://doi.org/10.1007/s11947-011-0545-3
[68] Rojsuntornkitti, K., Jittrepotch, N., Kongbangkerd, T., & Kraboun, K. (2010). Substitution of nitrate by Chinese red broken rice powder in Thai traditional fermented pork sausage (Nham), 17, 153–161.
[69] Rymbai, H., Sharma, R. R., & Srivastav, M. (2011). Sbiocolorants and its implications in health and food industry - a review. International Journal of PharmTech Research, 3(4), 2228–2244.
[70] Shah, M. M. R., Liang, Y., Cheng, J. J., & Daroch, M. (2016). Astaxanthin-Producing Green Microalga Haematococcus pluvialis: From Single Cell to High Value Commercial Products. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00531
[71] Shi, K., Song, D., Chen, G., Pistolozzi, M., Wu, Z., & Quan, L. (2015). Controlling composition and color characteristics of Monascus pigments by pH and nitrogen sources in submerged fermentation. Journal of Bioscience and Bioengineering, 120(2), 145–154. https://doi.org/10.1016/j.jbiosc.2015.01.001
[72] Sommer, A. (2008). Vitamin A Deficiency and Clinical Disease: An Historical Overview. The Jounal of Nutrition, 138(10). Retrieved from http://jn.nutrition.org/content/138/10/1835.full.pdf+html
[73] Sowani, H., Mohite, P., Damale, S., Kulkarni, M., & Zinjarde, S. (2016). Carotenoid stabilized gold and silver nanoparticles derived from the Actinomycete Gordonia amicalis HS-11 as effective free radical scavengers. Enzyme and Microbial Technology, 95, 164–173. https://doi.org/10.1016/j.enzmictec.2016.09.016
[74] Srianta, I., Zubaidah, E., Estiasih, T., Yamada, M., & Harijono. (2016). Comparison of Monascus purpureus growth, pigment production and composition on different cereal substrates with solid state fermentation. Biocatalysis and Agricultural Biotechnology, 7, 181–186. https://doi.org/10.1016/j.bcab.2016.05.011
[75] Stachowiak, B. (2012). Astaxanthin Synthesis by Yeast Xanthophyllomyces dendrorhous and its Mutants on Media Based on Plant Extracts. Indian Journal of Microbiology, 52(4), 654–659. https://doi.org/10.1007/s12088-012-0306-7
[76] Stafsnes, M. H., Josefsen, K. D., Kildahl-Andersen, G., Valla, S., Ellingsen, T. E., & Bruheim, P. (2010). Isolation and characterization of marine pigmented bacteria from Norwegian coastal waters and screening for carotenoids with UVA-blue light absorbing properties. The Journal of Microbiology, 48(1), 16–23. https://doi.org/10.1007/s12275-009-0118-6
[77] Subramaniam, S., Ravi, V., & Sivasubramanian, A. (2014). Synergistic antimicrobial profiling of violacein with commercial antibiotics against pathogenic micro-organisms. Pharmaceutical Biology, 52(1), 86–90. https://doi.org/10.3109/13880209.2013.815634
[78] Sun, J., Kim, S., Kim, G., Rhee, J., Kim, N., Jung, H., … Oh, J. (2012). Inhibition of hepatitis C virus replication by Monascus pigment derivatives that interfere with viral RNA polymerase activity and the mevalonate biosynthesis pathway. Journal of Antimicrobial Chemotherapy, 67(1), 49–58. https://doi.org/10.1093/jac/dkr432
[79] Taskin, M., & Kurbanoglu, E. b. (2011). Evaluation of waste chicken feathers as peptone source for bacterial growth. Journal of Applied Microbiology, 111(4), 826–834. https://doi.org/10.1111/j.1365-2672.2011.05103.x
[80] Thakur, K., Tomar, S. K., & Sacchinandan De. (2016). Lactic acid bacteria as a cell factory for riboflavin production. Microbial Biotechnology, 9(4), 441–451. https://doi.org/10.1111/1751-7915.12335
[81] Tinoi, J., Rakariyatham, N., & Deming, R. L. (2006). Utilization of mustard waste isolates for improved production of astaxanthin by Xanthophyllomyces dendrorhous. Journal of Industrial Microbiology & Biotechnology, 33(4), 309–314. https://doi.org/10.1007/s10295-005-0054-3
[82] Ungureanu, C., & Ferdes, M. (2012). Evaluation of Antioxidant and Antimicrobial Activities of Torularhodin. Advanced Science Letters, 18(1), 50–53. https://doi.org/10.1166/asl.2012.4403
[83] Varzakakou, M., & Roukas, T. (2009). Identification of carotenoids produced from cheese whey by Blakeslea trispora in submerged. Preparative Biochemistry and Biotechnology, 40(1), 76–82. https://doi.org/10.1080/10826060903400666
[84] Vendruscolo, F., Tosin, I., Giachini, A. J., Schmidell, W., & Ninow, J. L. (2014). Antimicrobial Activity of M onascus Pigments Produced in Submerged Fermentation: Antimicrobial Activity of Monascus Pigments. Journal of Food Processing and Preservation, 38(4), 1860–1865. https://doi.org/10.1111/jfpp.12157
[85] Vidyalakshmi, R., Paranthaman, R., Murugesh, S., & Singaravadivel, K. (2009). Microbial bioconversion of rice broken to food grade pigments. Global Journal of Biotechnology & Biochemistry, 4(2), 84–87.
[86] Vynne, N. G., Mansson, M., & Gram, L. (2012). Gene Sequence Based Clustering Assists in Dereplication of Pseudoalteromonas luteoviolacea Strains with Identical Inhibitory Activity and Antibiotic Production. Marine Drugs, 10(12), 1729–1740. https://doi.org/10.3390/md10081729
[87] Wang, B., Zhang, X., Wu, Z., & Wang, Z. (2016). Biosynthesis of Monascus pigments by resting cell submerged culture in nonionic surfactant micelle aqueous solution. Applied Microbiology and Biotechnology, 100(16), 7083–7089. https://doi.org/10.1007/s00253-016-7434-7
[88] Wang, J.-J., Lee, C.-L., & Pan, T.-M. (2004). Modified Mutation Method for Screening Low Citrinin-Producing Strains of Monascus purpureus on Rice Culture. Journal of Agricultural and Food Chemistry, 52(23), 6977–6982. https://doi.org/10.1021/jf049783o
[89] Xue-Mei, L., Xing-Hai, S., Lan, X., Zhen-Wen, D., & Shu-Ren, G. (2012). A Validated RP-HPLC Method for the Determination of Citrinin in Xuezhikang Capsule and other Monascus-Fermented Products. E-Journal of Chemistry, 9(1), 260–266. https://doi.org/10.1155/2012/693570
[90] Yamaguchi, M. (2012). Role of carotenoid beta-cryptoxanthin in bone homeostasis. Journal of Biomedical Science, 19(1), 36. https://doi.org/10.1186/1423-0127-19-36
[91] Zhang, L., Li, Z., Dai, B., Zhang, W., & Yuan, Y. (2013). Effect of submerged and solid-state fermentation on pigment and citrinin production by Monascus purpureus. Acta Biologica Hungarica, 64(3), 385–394. https://doi.org/10.1556/ABiol.64.2013.3.11
[92] Zou, T.-B., Jia, Q., Li, H.-W., Wang, C.-X., & Wu, H.-F. (2013). Response Surface Methodology for Ultrasound-Assisted Extraction of Astaxanthin from Haematococcus pluvialis. Marine Drugs, 11(5), 1644–1655. https://doi.org/10.3390/md11051644