• editor.aipublications@gmail.com
  • Track Your Paper
  • Contact Us
  • ISSN: 2456-8791

International Journal Of Forest, Animal And Fisheries Research(IJFAF)

Influence of some site factors on germinative parameters of Quercus seeds

Andrés Flores

Article Info: Received: 07 Dec 2021; Received in revised form: 10 Jan 2022; Accepted: 20 Jan 2022; Available online: 06 Feb 2022

Download | Downloads : 6 | Total View : 895

DOI: 10.22161/ijfaf.6.1.1

Journal : International Journal Of Forest, Animal And Fisheries Research(IJFAF)

Share

The genus Quercus has a high economic and ecological potential in Mexico. Nonetheless, its populations are reducing yearly, which demands the implementation of efficient management strategies to preserve them. To determine germinating capacity of seeds, and to learn about their relationship with some conditions of collecting sites (latitude N, accumulated degree-days >5 C in the frozen-free period (AD), precipitation of growing season (PGS)) we used information of seeds and collecting sites for natural populations of Quercus crassifolia, Q. jonesii, Q. polymorpha and Q. potosina. We determined that Q. potosina, the northernmost population; showed higher values of seeds mean weight, percentage of germinated seeds (PGS), average germination time (AGT), peak value (PV), and germination energy (GE), than other species. Q. polymorpha also showed high mean values of seeds weight, PGS, PV, and GE and it was collected at northern latitudes near those of Q. crassifolia and Q. jonesii. Q. jonesii was the southernmost population and showed lower values in these parameters. On the other hand, the analysis also determined that Q. jonesii, Q. plymorpha, and Q. potosina had quicker germination than Q. crassifolia. We inferred that for the species in the analyzed sites, increasing PGS improves sites conditions, which promotes better germination of germplasm.

Germination energy, latitude, weight seed, growing season precipitation, mean germination time.

[1] Alonso-Conrrado, C., E. Campos J., A. Mendoza, V. Aguirre-Hidalgo, S. Valencia-Davalos, G. González-Adame, F. Wooden G. and R. Clark-Tapia. 2014. Restoration-focused germination and development of five central Mexican oak species. Open Journal of Forestry. 4: 171-180.
[2] Côme, D. 1970. Les obstacles à la germination. Monographies de Physiologie Vegetale. (6): 162.
[3] Crookston, N. L. 2017. Research on forest climate change: potential effects of global warming on forests and plant climate relationships in western North America and Mexico. http://charcoal.cnre.vt.edu/climate/
[4] Czabator, F. J. 1962. Germination value: an index combining speed and completeness of pine seed germination. Forest Science. 8(4): 386-396.
[5] Food and Agriculture Organization (FAO). 2017. Ensayo de la semilla. http://www.fao.org/3/AD232S/ad232s13.htm.
[6] García de la C., Y., F. López-Barrera and J. M. Ramos-Prado. 2016. Germination and seedling emergence of four endangered oak species. Madera y Bosques. 22(2): 77-87.
[7] González-Salvatierra, C., E. I. Badano, J. Flores and J. P. Rodas. 2013. Germinación, infestación y viabilidad en bellotas de Quercus polymorpha (Schltdl. & Cham.) tras un año de almacenamiento. Revista Chapingo Serie Ciencias Forestales y del Ambiente. 19(3): 351-362.
[8] Gorgonio-Ramírez, M., R. Clark T., J. Campos C., A. Montalvo R. and C. L. Alfonso C. 2017. Diversidad y estructura genética de Quercus crassifolia en sitios de manejo forestal y uso local en Sierra Juárez, Oaxaca. Madera y Bosques. 23(2): 85-98.
[9] Kolotelo, D., E. V. Steenis, M. Peterson, R. Bennett, D. Trotter and J. Dennis. 2001. Seed handling guidebook. Ministry of Forests, Tree Improvement Branch. Canada: Vancouver, BC. 106 p.
[10] Llanderal-Mendoza, J., P. F. Gugger, K. Oyama, D. Uribe-Salas and A. González-Rodríguez, A. 2017. Climatic determinants of acorn size and germination percentage of Quecus rugosa (Fagaceae) along a latitudinal gradient in Mexico. Botanical Sciences. 95(1): 37-45.
[11] Márquez R., J., L. C. Mendizábal H. and C. I. Flores R. 2005. Variación en semillas de Quercus oleoides Schltdl. et Cham. de tres poblaciones del centro de Veracruz, México. Foresta Veracruzana. 7(1): 31-36.
[12] Morgenstern, E. K. 1996. Geographic variation in forest trees: genetic basis and application of knowledge in silviculture. UBC Press. Canada: Vancouver, BC. 209 p.
[13] Mrdja, J., J. Crnobarac, V. Radić and V. Miklič. 2012. Sunflower seed quality and yield in relation to environmental conditions of production region. Helia. 35(57): 123–134.
[14] Oyama, K., W. Ramírez-Toro, J. M. Peñaloza-Ramírez, A. E. Pérez P., C. A. Torres-Miranda, E. Ruiz-Sánchez and A. González-Rodríguez. 2018. High genetic diversity and connectivity among populations of Quercus candicans, Quercus crassifolia, and Quercus castanea in a heterogeneous landscape in Mexico. Tropical Conservation Science. 11: 1-14.
[15] Radić, V., M. Vujakovlć, A. Marjanović-Jeromela, J. Mrda, V. Miklič, N. Dušanić and I. Balalić, I. 2009. Interdependence of sunflower seed quality parameters. Helia. 32(50): 157-164.
[16] Rodríguez-Acosta, M. and A. J. Coombes. 2020. Manual para la propagación de Quercus: Una guía fácil y rápida para cultivar encinos en México y América Central. Jardín Botánico Universitario de la Benemérita Universidad Autónoma de Puebla. México: Puebla, 79 p.
[17] Rodríguez-Trejo, D. A. and R. L. Myers. 2016. Using oak characteristics to guide fire regime restoration in Mexican pine-oak and oak forests. Ecological Restoration. 28(3): 304-323.
[18] Rubio-Licona, L., S. Romero-Rangel, C. Rojas-Zenteno, Á. Durán-Díaz and J. Gutiérrez-Guzmán. 2011. Variación del tamaño de frutos y semillas en siete especies de encino (Quercus, Fagaceae). Polibotánica. 32: 135–151.
[19] Sáenz-Romero, C., G. E. Rehfeldt, N. L. Crookston, P. Duval, R. St-Amant, J. Beaulieu and B. A. Richardson. 2010. Spline models of contemporary, 2030, 2060 and 2090 climates for Mexico and their use in understanding climate-change impacts on the vegetation. Climatic Change. 102(3-4): 595-623.
[20] Sánchez-Montes de Oca, E. J., E. I. Badano, L. E. Silva-Alvarado, J. Flores, F. Barragán-Torres and J. A. Flores-Cano. 2018. Acorn weight as determinant of germination in red and white oaks: evidences from a common-garden greenhouse experiment. Annals of Forest Science. 75(1): 1-12.
[21] Uribe-Salas, D., C. Sáenz-Romero, A. González-Rodríguez, O. Téllez-Valdéz and K. Oyama. 2008. Foliar morphological variation in the white oak Quercus rugosa Née (Fagaceae) along a latitudinal gradient in Mexico: Potential implications for management and conservation. Forest Ecology and Management. 256(12): 2121-2126.
[22] Boshier D., Broadhurst L., Cornelius J., Gallo L., Koskela J., Loo J., Petrokofsky G. and St Claire B. 2015. Is local best? Examining the evidence for local adaptation in trees and its scale. Environ Evid 4:20.
[23] Bargali, K., 2018. Seed variation in Quercus floribunda Lindl., and its effect on germination and seedling growth. Curr. Trends Forest Res: CTFR-107. DOI: 10.29011/ CTFR-107. 100007
[24] Carevic FS, Delatorre-Herrera J, Delatorre-Castillo J. 2017. Inter- and intrapopulation variation in the response of tree seedlings to drought: physiological adjustments based on geographical origin, water supply and species. AoB PLANTS X: plx037; doi: 10.1093/aobpla/plx037
[25] Burney, O.; Aldrete, A.; Alvarez, R.J.; Prieto, R.J.A.; Sanchez, V.J.; Mexal, J. Mexico-Addressing Challenges to Reforestation. J. For. 2015, 113, 404–413.