[1] Ullah, R., Marwat, S. N. K., Ahmad, A. M., Ahmed, S., Hafeez, A., Kamal, T., & Tufail, M. (2020). A Machine Learning Approach for 5G SINR Prediction. Electronics, 9(10), 1660.
[2] Kumar, A. S., Vanmathi, S., Sanjay, B. P., Bharathi, S. R., & Meena, M. S. (2018). Handover forecasting in 5G using machine learning. International Journal of Engineering & Technology, 7(2.31), 76-79.
[3] Ali, Z., Baldo, N., Mangues-Bafalluy, J. and Giupponi, L., 2016, April. Machine learning based handover management for improved QoE in LTE. In NOMS 2016-2016 IEEE/IFIP Network Operations and Management Symposium, pp. 794-798.
[4] Santos, G. L., Endo, P. T., Sadok, D., & Kelner, J. (2020). When 5G meets deep learning: a systematic review. Algorithms, 13(9), 208.
[5] Sakthivel, B. (2021). Generic Framework For Handoff In Wireless Sensor Networks With Random Forest Classifier. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(9), 3117-3122.
[6] Aldossari, S., & Chen, K. C. (2019, November). Relay Selection for 5G New Radio Via Artificial Neural Networks. In 2019 22nd International Symposium on Wireless Personal Multimedia Communications (WPMC) ,pp. 1-5.
[7] Morocho-Cayamcela, M. E., Lee, H., & Lim, W. (2019). Machine learning for 5G/B5G mobile and wireless communications: Potential, limitations, and future directions. IEEE Access, 7, 137184-137206.
[8] Xie, F., Wei, D., & Wang, Z. (2021). Traffic analysis for 5G network slice based on machine learning. EURASIP Journal on Wireless Communications and Networking, 2021(1), 1-15.
[9] Alhammadi, A., Roslee, M., Alias, M. Y., Shayea, I., & Alquhali, A. (2020). Velocity-aware handover self-optimization management for next generation networks. Applied Sciences, 10(4), 1354.
[10] Alhammadi, A., Roslee, M., Alias, M.Y., Shayea, I., Alraih, S. and Mohamed, K.S., 2019. Auto tuning self-optimization algorithm for mobility management in LTE-A and 5G HetNets. IEEE Access, 8, pp.294-304.
[11] Lin, P. C., Casanova, L. F. G., & Fatty, B. K. (2016). Data-driven handover optimization in next generation mobile communication networks. Mobile Information Systems, 2016.
[12] Kiran, K., 2021. 5G heterogeneous network (HetNets): a self-optimization technique for vertical handover management. International Journal of Pervasive Computing and Communications.
[13] Beshley, M., Kryvinska, N., Yaremko, O. and Beshley, H., 2021. A Self-Optimizing Technique Based on Vertical Handover for Load Balancing in Heterogeneous Wireless Networks Using Big Data Analytics. Applied Sciences, 11(11), p.4737.
[14] Chandralekha, M. and Behera, P.K., 2011. Optimization of vertical handoff performance parameters in heterogeneous wireless networks. International Journal of Modern Engineering Research, 1(2), pp.597-601.
[15] Alhammadi, A., Roslee, M., Alias, M.Y., Shayea, I., Alriah, S. and Abas, A.B., 2019, July. Advanced handover self-optimization approach for 4G/5G HetNets using weighted fuzzy logic control. In 2019 15th International Conference on Telecommunications (ConTEL), pp. 1-6.
[16] Tanveer, J., Haider, A., Ali, R. and Kim, A., 2021. Reinforcement Learning-Based Optimization for Drone Mobility in 5G and Beyond Ultra-Dense Networks. Cmc-computers materials & continua, 68(3), pp.3807-3823.
[17] Monil, Mohammad AlaulHaque, RomasaQasim, and Rashedur M. Rahman. "Speed and direction based fuzzy handover system." In 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1-8.
[18] Alhammadi, A., Roslee, M., Alias, M.Y., Shayea, I. and Alquhali, A., 2020. Velocity-aware handover self-optimization management for next generation networks. Applied Sciences, 10(4), p.1354.
[19] Edwards, George, and Ravi Sankar. "Microcellular handoff using fuzzy techniques." Wireless Networks 4, no. 5 (1998): 401-409.
[20] Bchini, Tarek, Nabil Tabbane, Sami Tabbane, Emmanuel Chaput, and André-Luc Beylot. "Fuzzy logic based layers 2 and 3 handovers in IEEE 802.16 e network." Computer communications 33, no. 18 (2010): 2224-2245.
[21] Muñoz, P., Raquel Barco, and Isabel de la Bandera. "Load balancing and handover joint optimization in LTE networks using fuzzy logic and reinforcement learning." Computer Networks 76 (2015): 112-125.
[22] Kavitha, V., G. Manimala, and R. GokulKannan. "AI-Based Enhancement of Base Station Handover." Procedia Computer Science 165 (2019): 717-723.
[23] Kashmar, N., Atieh, M. and Haidar, A., 2016. Identifying the Effective Parameters for Vertical Handover in Cellular Networks Using Data Mining Techniques. Procedia Computer Science, 98, pp.91-99.
[24] Khalaf, G.A.F.M. and Badr, H.Z., 2013. A comprehensive approach to vertical handoff in heterogeneous wireless networks. Journal of King Saud University-Computer and Information Sciences, 25(2), pp.197-205.
[25] Jain, Aabha, and SanjivTokekar. "Application based vertical handoff decision in heterogeneous network." Procedia Computer Science 57 (2015): 782-788.
[26] Thumthawatworn, Thanachai. "Adaptive membership functions for handover decision system in wireless mobile network." Procedia Computer Science 86 (2016): 31-34.
[27] Abuhasnah, J.F. and Muradov, F.K., 2017. Direction prediction assisted handover using the multilayer perception neural network to reduce the handover time delays in LTE networks. Procedia computer science, 120, pp.719-727.
[28] Nie, S., Wu, D., Zhao, M., Gu, X., Zhang, L. and Lu, L., 2015. An enhanced mobility state estimation based handover optimization algorithm in LTE-A self-organizing network. Procedia Computer Science, 52, pp.270-277.