• editor.aipublications@gmail.com
  • Track Your Paper
  • Contact Us
  • ISSN: 2456-7817

International Journal Of Engineering, Business And Management(IJEBM)

Prediction of Euro 50 Using Back Propagation Neural Network (BPNN) and Genetic Algorithm (GA)

Rezzy Eko Caraka

International Journal of Engineering, Business And Management(IJEBM), Vol-1,Issue-1, May - June 2017, Pages 35-42 ,

Download | Downloads : 6 | Total View : 1865


Modeling time series is often associated with the process forecasts certain characteristics in the next period. One of the methods forecasts that developed nowadays is using artificial neural network or more popularly known as a neural network. Use neural network in forecasts time series can be a good solution, but the problem is network architecture and the training method in the right direction. One of the choices that might be using a genetic algorithm. A genetic algorithm is a search algorithm stochastic resonance based on how it works by the mechanisms of natural selection and genetic variation that aims to find a solution to a problem. This algorithm can be used as teaching methods in train models are sent back propagation neural network. The application genetic algorithm and neural network for divination time series aim to get the weight optimum. From the training and testing on the data index share price euro 50 obtained by the RMSE testing 27.8744 and 39.2852 RMSE training. The weight or parameters that produced by has reached an optimum level in second-generation 1000 with the best fitness and the average 0.027771 the fitness of 0.0027847.Model is good to be used to give a prediction that is quite accurate information that is shown by the close target with the output.

Genetic Algorithm, Back Propagation Neural Network, Euro 50, Prediction, Neural Network.

[1] Caraka,R.E.,Yasin,H “Prediksi Produksi Gas Bumi dengan General Regression Neural Network (GRNN)”, in Proc.National Statistics Conference (SNS IV), 2014, ISSN : 2087-2590 pp 270-277
[2] Caraka,R.E.,Yasin,H “Pemodelan General Regression Neural Network (GRNN) pada Data Return Indeks Harga Saham Euro 50, Jurnal Gaussian,vol 4,no2, 2015, Pp.89-94,2015.
[3] Caraka,R.E.,Yasin, H, & Prahutama,A. “Pemodelan General Regression Neural Network (GRNN) dengan Peubah Input Data Return Untuk Peramalan Indeks Hangseng, Seminar Nasional Ilmu Komputer Universitas Negeri Semarang , ISBN:978-602-71550-0-9, 2014, pp.283-288, 2014.
[4] Desiani dan Arhami. Konsep Kecerdasan Buatan, 2006, Andi Offset Yogyakarta.
[5] Fausett, L. Fundamental of Neural Network : Architecture, Algorithm, and Application, 1994, New Jersey. Prentice-Hall.
[6] Haykin, S. Neural Networks: A Comprehensive Foundation, 1994, Macmillan Publishing Company, New York.
[7] Kusumadewi, S.Artificial Intelligence (Teknik dan Aplikasinya), 2003, Graha Ilmu. Yogyakarta.
[8] Montana, D.J, and Davis, L. Training Feedforward Neural Networks Using Genetic Algorithms, 1993, BBN Systems and Technologies Corp. 10 Moution St. Cambridge, MA.
[9] Neves, J, and Cortez, P.Combining Genetic Algorithms, Neural Networks and Data Filtering for Time Series Forecasting, 1998, Departamento de Informatica Universidade do Minho. Portugal.
[10] Pandjaitan, L.W. Dasar-Dasar Komputasi Cerdas, 2002, Andi Offset. Yogyakarta.
[11] Pandjaitan, L.W.Dasar-Dasar Komputasi Cerdas,2007 Andi Offset. Yogyakarta.
[12] Siang, J.J. Jaringan Syaraf Tiruan dan Pemrogramannya Menggunakan MATLAB, 2005,Andi Offset. Yogyakarta.
[13] Suyanto. Algoritma Genetika dalam MATLAB, 2005, Andi Offset. Yogyakarta.
[14] Warsito, B.Kapita Selekta Statistika Neural Network, 2009, BP Universitas Diponegoro. Semarang.
[15] Yuliandar, D. Pelatihan Feed Forward Neural Network Menggunakan Algoritma Genetika dengan Seleksi Turnamen untuk Data Time Series, 2012, Jurnal Gaussian Volume 1 Nomor 1 Universitas Diponegoro. Semarang.
[16] Yasin,H.,Caraka,R.E., Tarno, and Hoyyi,A. Prediction Of Crude Oil Prices Using Support Vector Regression (SVR) With Grid Search–Cross Validation Algortyhm. Vol.12 No.4; August. Global Journal of Pure and Applied Mathematics. Print ISSN : 0973-1768 Online ISSN: 0973-9750,2016, pp. 3009–3020