Asya Alabdalah , Sergio Hoyas Calvo , Ethat Aloosh
International Journal of Engineering, Business And Management(IJEBM), Vol-2,Issue-1, January - February 2018, Pages 1-12 , 10.22161/ijebm.2.1.1
Download | Downloads : 6 | Total View : 1730
Shortage of detailed and accurate experimental data on fuel-air mixing in furnaces is due to the difficulty and complexity of measurements in flames. Although it may be possible with infra-Red camera to obtain an indication of what happens in the furnace by graphical image resolution this is not expected to be sufficiently detailed because it contains only the temperature gradient. More detailed information, however, may be obtained from the simulated resolution using Computational Fluid Dynamics (CFD) technique where the total number of elements/points defines the detailed level that can be displayed or captured in graphical image. Simulation resolution studies two aspects of the momentum effects on flame which are the forward momentum normally associated with the average outlet velocity of the combustion products and the lateral momentum caused by swirl. Following the American Petroleum Institute guidelines (API 560) for combustion adjustment in furnaces, it may be possible to have less emission and a maximum efficiency, but the potential interaction between the several operation and design factors are not thereby considered as in a mathematical model of CFD.