• editor.aipublications@gmail.com
  • Track Your Paper
  • Contact Us
  • ISSN: 2456-866X

International Journal Of Chemistry, Mathematics And Physics(IJCMP)

Toxic Interaction Mechanism of food Colorant Sunset Yellow with trypsin by Spectroscopic and Computational Method

Hongcai Zhang , Baosheng Liu , Xu Cheng


International Journal of Chemistry, Mathematics And Physics(IJCMP), Vol-3,Issue-4, July - August 2019, Pages 83-94 ,

Download | Downloads : 6 | Total View : 1116

Share

The interaction between food colorant sunset yellow (SY) and trypsin (TRP) was studied by multiple spectroscopic and molecular docking methods and molecular docking simulation under simulated physiological conditions to evaluate the toxic of SY at the protein level. The results showed that SY could effectively quench the endogenous fluorescence of TRP, formed a 1:1 complex. The binding distance (r) between SY and TRP was obtained based on the Förster nonradioactive resonance energy transfer and r was less than 7 nm, which indicated that there was a non-radiative energy transition in the system. The thermodynamic parameters were obtained from the van't Hoff equation, and the Gibbs free energy ΔG<0, indicating that the reaction was spontaneous; ΔH<0, ΔS>0, indicating hydrophobic interaction played a major role in forming the SY-TRP complex. Molecular docking results showed that SY was surrounded by the active amino acid residues Ser195, His57 and Asp102 of TRP, which altered the microenvironment of amino acid residues at the catalytic active center of TRP. Furthermore, as shown by the synchronous fluorescence, UV-Visible absorption and circular dichroism data, SY could lead to the conformational and microenvironmental changes of TRP, which may affect its physiological function.

Spectroscopy; Sunset yellow; Trypsin; Molecular docking; Binding rate.

[1] Liu, Y.Y.; Zhang, G.W.; Liao, Y.G.; Wang, Y.P. Binding characteristics of psoralen with trypsin: Insights from spectroscopic and molecular modeling studies. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2015, 151, 498-505. doi: 10.1016/j.saa.2015.07.018.
[2] He, W.; Dou, H.J.; Zhang, L.; Wang, L.J.; Wang, R.Y.; Chang, J.B. Spectroscopic study on the interaction of Trypsin with Bicyclol and analogs. Acta. A. Mol. Biomol. Spectrosc. 2014, 118, 510-519. doi: 10.1016/j.saa.2013.09.027.
[3] Ding, K.K.; Zhang, H.X.; Wang, H.F.; Lv, X.; Pan, L.M.; Zhang, W.J.; Zhuang, S.L. Atomic-scale investigation of the interactions between tetrabromobisphenol A, tetrabromobisphenol S and bovine trypsin by spectroscopies and molecular dynamics simulations. J. Hazard. Mater. 2015, 299, 486-494. doi:10.1016/j.jhazmat.2015.07.050.
[4] Almeida, M.R.; Stephani, R.; Santos, H.F.; Oliveira, L.F. Spectroscopic and theoretical study of the “azo”-dye E124 in condensate phase: evidence of a dominant hydrazo form. J. Phys. Chem. A. 2009, 114, 526-534. doi: 10.1021/jp907473d
[5] Perez-Urquiza, M.; Beltran, J. Determination of dyes in foodstuffs by capillary zone electrophoresis. J. Chromatogr. A. 2000, 898, 271–275. doi: 10.1016/S0021-9673(00)00841-4.
[6] McCann, D.; Barrett, A.; Cooper, A.; Crumpler, D.; Dalen, L.; Grimshaw, K.; Kitchin, E.; Lok, K.; Porteous, L.; Prince, E.; Sonuga-Brake, E.; Warner, J.O.; Stevenson, J. Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: a randomised, double-blinded, placebo-controlled trial. Lancet. 2007, 370, 1560-1567. doi: 10.1016/s0140-6736(07)61306-3
[7] Dorraji, P.S., Jalali, F. Electrochemical fabrication of a novel ZnO/cysteic acid nanocomposite modified electrode and its application to simultaneous determination of sunset yellow and tartrazine. Food. Chem. 2017, 227, 73-77. doi: 10.1016/j.foodchem.2017.01.071
[8] Mohseni-Shahri, F.S.; Moeinpour, F.; Nosrati, M. Spectroscopy and molecular dynamics simulation study on the interaction of sunset yellow food additive with trypsin. Int. J. Biol. Macromol. 2018, 115, 273-280. doi: 10.1016/j.ijbiomac.2018.04.080.
[9] Liu, Z.D.; Han, D.Q.; Yang, W.W.; Shao, S. S.; Sun, Q.S. Interactions of Bovine Serum Albumin with Lemon Yellow and Sunset Yellow Studied by Fluorescence Spectroscopy. J. Food. Sci. 2014, 35, 128-131.
[10] Ma, L.H.; Liu, B.S.; Wang, C.D.; Zhang, H.C.; Cheng, X. The interaction mechanism of nifedipine and pepsin. Mon. Chem. 2018, 149, 2123-2130. doi:10.1007/s00706-018-2269-9.
[11] Elmas, G.; Esra, Y. Fluorescence interaction and determination of sulfathiazole with trypsin. J. Fluoresc. 2014, 24, 1439-1445. doi:10.1007/s10895-014-1427-7.
[12] Safarnejad, A.; Shaghaghi, M.; Dehghan, G.; Soltani, S. Binding of carvedilol to serum albumins investigated by multi-spectroscopic and molecular modeling methods. J. Lumin. 2016, 176, 149-158. doi:10.1016/j.jlumin.2016.02.001.
[13] Tian, Z.Y; Zang, F.L.; Luo, W.; Zhao, Z.H.; Wang, Y.Q.; Xu, X.J. Spectroscopic study on the interaction between mononaphthalimide spermidine (MINS) and bovine serum albumin (BSA). J. Photochem. Photobiol. B-Biol. 2015, 142, 103-109. doi: 10.1016/j.jphotobiol.2014.10.013.
[14] Cao, S.N.; Liu, B.S.; Li, Z.Y.; Zong, B.H. A fluorescence spectroscopic study of the interaction between Glipizide and bovine serum albumin and its analytical application. J. Lumin. 2014, 145, 94-99. doi:10.1016/j.jlumin.2013.07.026.
[15] Cheng, F.Q.; Wang, Y.P.; Li, Z.P.; Dong, C. Fluorescence study on the interaction of human serum albumin with bromsulphalein. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2006, 65, 1144-1147. doi:10.1016/j.saa.2006.01.024.
[16] Basken, N. E.; Green, M.A. Cu(II) bis(thiosemicarbazone) radiopharmaceutical binding to serum albumin: further definition of species dependence and associated substituent effects. Nucl. Med. Biol. 2009, 36, 495-504. doi:10.1016/j.nucmedbio.2009.02.006.
[17] Guo, J.; Zhong, R.; Li, W.R.; Liu, Y.S. Interaction study on bovine serum albumin physically binding to silver nanoparticles: Evolution from discrete conjugates to protein coronas. Appl. Surf. Sci. 2015, 359, 82-88. doi:10.1016/j.apsusc.2015.09.247.
[18] Rehman, S.U.; Sarwar, T.; Ishqi, H.M.; Husain, M.A.; Hasan, Z.; Tabish, M. Deciphering the interactions between chlorambucil and calf thymus DNA: A multi-spectroscopic and molecular docking study. Arch. Biochem. Biophys. 2015, 566, 7-14. doi:10.1016/j.abb.2014.12.013.
[19] Ross, P.D.; Subramanian, S. Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry. 1981, 20, 3096-3102. doi:10.1021/bi00514a017.
[20] Zhou, H.; Bi, S.; Wang, Y.; Zhao, T. Characterization of the binding of paylean and DNA by fluorescence, UV spectroscopy and molecular docking techniques. Lumin. 2016, 31, 1013-1019. doi:10.1002/bio.3066.
[21] Azimi, O.; Emami, Z.; Salari, H.; Chamani, J. Probing the interaction of human serum albumin with norfloxacin in the presence of high-frequency electromagnetic fields: fluorescence spectroscopy and circular dichroism investigations. Molecules. 2011, 16, 9792-9818. doi:10.3390/molecules16129792.
[22] Hu, X.X.; Yu, Z.Y.; Liu, R.T. Spectroscopic investigations on the interactions between isopropanol and trypsin at molecular level. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2013, 108, 50-54. doi:10.1016/j.saa.2013.01.072.
[23] Liu, Y.; Chen, M. M.; Song, L. Comparing the effects of Fe(III) and Cu(II) on the binding affinity of erlotinib to bovine serum albumin using spectroscopic methods. J. Lumin. 2013, 134, 515-523. doi:10.1016/j.jlumin.2012.07.036.
[24] Cagnardi, P.; Villa, R.; Gallo, M.; Locatelli, C.; Carli, S.; Moroni, P.; Zonca, A. Cefoperazone sodium preparation behavior after intramammary administration in healthy and infected cows. J. Dairy Sci. 2010, 93, 4105-4110. doi:10.3168/jds.2010-3379.
[25] Liu, Y.Y.; Zhang, G.W.; Liao, Y.G.; Wang, Y.P. Binding characteristics of psoralen with trypsin: Insights from spectroscopic and molecular modeling studies. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2015, 151, 498-505. doi:10.1016/j.saa.2015.07.018.
[26] Gabb, H.A.; Jackson, R.M.; Sternberg, M.J. Modelling protein docking using shape complementarity, electrostatics and biochemical information. J. Mol. Biol. 1997, 272, 106-120. doi:10.1006/jmbi.1997.1203.
[27] Jin, J.; Zhang, X. Spectrophotometric studies on the interaction between pazufloxacin mesilate and human serum albumin or lysozyme. J. Lumin. 2008, 128, 81-86. doi:10.1016/j.jlumin.2007.05.008.
[28] Bertucci, C.; Domenici, E. Reversible and Covalent Binding of Drugs to Human Serum Albumin: Methodological Approaches and Physiological Relevance. Curr. Med. Chem. 2002, 9, 1463-1481. doi: 10.2174/0929867023369673.
[29] Manivel, A.; Anandan, S. Spectral interaction between silica coated silver nanoparticles and serum albumins. Colloid. Surface. A. 2012, 395, 38-45. doi:10.1016/j.colsurfa.2011.12.001.
[30] Jana, S.; Dalapati, S.; Ghosh, S.; Guchhait, N. Study of microheterogeneous environment of protein Human Serum Albumin by an extrinsic fluorescent reporter: a spectroscopic study in combination with Molecular Docking and Molecular Dynamics Simulation. J. Photochem. Photobiol. B-Biol. 2012, 112, 48-58. doi:10.1016/j.jphotobiol.2012.04.007.