• editor.aipublications@gmail.com
  • Track Your Paper
  • Contact Us
  • ISSN: 2456-866X

International Journal Of Chemistry, Mathematics And Physics(IJCMP)

Structural, morphological, and photoluminescence study of Europium doped spinel ZnAl2O4 phosphors

N. M. Gahane , P. J. Chaware , K. G. Rewatkar

International Journal of Chemistry, Mathematics And Physics(IJCMP), Vol-7,Issue-1, January - February 2023, Pages 1-6 , 10.22161/ijcmp.7.1.1

Download | Downloads : 7 | Total View : 450

Article Info: Received: 03 Dec 2022; Received in revised form: 03 Jan 2023; Accepted: 10 Jan 2023; Available online: 18 Jan 2023


Nanocrystalline Eu-doped Zinc aluminate spinel was produced by a combustion method. Different methods, including X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and photoluminescence spectroscopy, were used to examine the prepared spinel type ZnAl2O4 ceramic material and characterize its structural, morphological, and photoluminescent properties. The formation of a pure phase with a spinel structure and the space groupfd3 ̅m is confirmed by the zinc aluminate material's X-ray diffraction pattern. Scan and transmission electron microscopy were used to further establish the average surface structure and crystalline size. The PL spectra show the strongest emission at 616 nm corresponds to the 5D0 → 7F2 transition of Eu3+. Photometric parameters like CIE coordinates and CCT values show that prepared phosphor that gives off a bright red light is used in the display and lamp industries.

photoluminescence, zinc aluminate, XRD, SEM, TEM, CIE.

[1] P. Chaware, K.G. Rewatkar, Structural and photoluminescence study of SrAl2O4:Eu3+ phosphors synthesized by combustion method, International Journal of Chemistry, Mathematics and Physics (IJCMP). 5 (2021) 1–6. https://doi.org/10.22161/ijcmp.5.6.1.
[2] P.J. Chaware, Y.D. Choudhari, D.M. Borikar, K.G. Rewatkar, Photoluminescence and Judd-Ofelt analysis of Eu3+ doped akermanite silicate phosphors for solid state lighting, Opt Mater (Amst). 133 (2022). https://doi.org/10.1016/j.optmat.2022.112945.
[3] V.B. Pawade, H.C. Swart, S.J. Dhoble, Review of rare earth activated blue emission phosphors prepared by combustion synthesis, Renewable and Sustainable Energy Reviews. 52 (2015) 596–612. https://doi.org/10.1016/j.rser.2015.07.170.
[4] V.B. Bhatkar, N. v. Bhatkar, Combustion synthesis and photoluminescence study of silicate biomaterials, Bulletin of Materials Science. 34 (2011) 1281–1284. https://doi.org/10.1007/s12034-011-0166-5.
[5] T. Peng, H. Yang, X. Pu, B. Hu, Z. Jiang, C. Yan, Combustion synthesis and photoluminescence of SrAl2O 4:Eu,Dy phosphor nanoparticles, Mater Lett. 58 (2004) 352–356. https://doi.org/10.1016/S0167-577X(03)00499-3.
[6] R. Priya, A. Negi, S. Singla, O.P. Pandey, Luminescent studies of Eu doped ZnAl2O4 spinels synthesized by low-temperature combustion route, Optik (Stuttg). 204 (2020) 164173. https://doi.org/10.1016/j.ijleo.2020.164173.
[7] S. v. Motloung, M. Tsega, F.B. Dejene, H.C. Swart, O.M. Ntwaeaborwa, L.F. Koao, T.E. Motaung, M.J. Hato, Effect of annealing temperature on structural and optical properties of ZnAl2O4:1.5% Pb2+ nanocrystals synthesized via sol-gel reaction, J Alloys Compd. 677 (2016) 72–79. https://doi.org/10.1016/j.jallcom.2016.03.170.
[8] H. Zhao, Y. Dong, P. Jiang, G. Wang, J. Zhang, C. Zhang, ZnAl2O4 as a novel high-surface-area ozonation catalyst: One-step green synthesis, catalytic performance and mechanism, Chemical Engineering Journal. 260 (2015) 623–630. https://doi.org/10.1016/j.cej.2014.09.034.
[9] D. Zhang, Y.H. Qiu, Y.R. Xie, X.C. Zhou, Q.R. Wang, Q. Shi, S.H. Li, W.J. Wang, The improvement of structure and photoluminescence properties of ZnAl2O4:Cr3+ ceramics synthesized by using solvothermal method, Mater Des. 115 (2017) 37–45. https://doi.org/10.1016/j.matdes.2016.11.034.
[10] S.P. Khambule, S. v. Motloung, T.E. Motaung, L.F. Koao, R.E. Kroon, M.A. Malimabe, Tuneable blue to orange phosphor from Sm3+ doped ZnAl2O4 nanomaterials, Results in Optics. 9 (2022). https://doi.org/10.1016/j.rio.2022.100280.
[11] B.S. Ravikumar, H. Nagabhushana, S.C. Sharma, B.M. Nagabhushana, Low temperature synthesis, structural and dosimetric characterization of ZnAl2O4:Ce3+ nanophosphor, Spectrochim Acta A Mol Biomol Spectrosc. 122 (2014) 489–498. https://doi.org/10.1016/j.saa.2013.10.106.
[12] P. Halappa, S.T. Raj, R. Sairani, S. Joshi, R. Madhusudhana, C. Shivakumara, Combustion synthesis and characterisation of Eu3+-activated Y2O3red nanophosphors for display device applications, Int J Nanotechnol. 14 (2017) 833–844. https://doi.org/10.1504/IJNT.2017.086767.
[13] K. Mori, H. Onoda, T. Toyama, N. Osaka, Y. Kojima, Synthesis and fluorescence studies of Eu3+-doped SrAl12O19 phosphor, Optik (Stuttg). 180 (2019) 183–188. https://doi.org/10.1016/j.ijleo.2018.11.047.
[14] I.E. Kolesnikov, E. v. Golyeva, E.V. Borisov, E.Y. Kolesnikov, Photoluminescence properties of Eu3+-doped MgAl2O4 nanoparticles in various surrounding media, ChemInform. 40 (2009) 806–811. https://doi.org/10.1016/j.jre.2018.10.019.
[15] V. Sivakumar, U. v. Varadaraju, Synthesis, phase transition and photoluminescence studies on Eu3+-substituted double perovskites-A novel orange-red phosphor for solid-state lighting, J Solid State Chem. 181 (2008) 3344–3351. https://doi.org/10.1016/j.jssc.2008.08.030.
[16] S. v. Motloung, F.B. Dejene, H.C. Swart, O.M. Ntwaeaborwa, Effects of Zn/citric acid mole fraction on the structure and luminescence properties of the un-doped and 1.5% Pb2+ doped ZnAl2O4 powders synthesized by citrate sol-gel method, J Lumin. 163 (2015) 8–16. https://doi.org/10.1016/j.jlumin.2015.02.027.
[17] Y.D. Choudhari, K.G. Rewatkar, Influence of Bi3+ ions substitution on structural, magnetic, and electrical properties of lead hexaferrite, J Magn Magn Mater. 551 (2022) 169162. https://doi.org/10.1016/J.JMMM.2022.169162.
[18] R. v. Perrella, C.S. Nascimento, M.S. Góes, E. Pecoraro, M.A. Schiavon, C.O. Paiva-Santos, H. Lima, M.A. Couto Dos Santos, S.J.L. Ribeiro, J.L. Ferrari, Structural, electronic and photoluminescence properties of Eu3+-doped CaYAlO4 obtained by using citric acid complexes as precursors, Opt Mater (Amst). 57 (2016) 45–55. https://doi.org/10.1016/j.optmat.2016.04.012.
[19] A. Azhagiri, V. Ponnusamy, R. Satheesh Kumar, A development of new red phosphor based on europium doped as well as substituted Barium Lanthanum Aluminate (BaLaAlO4: Eu3+), Opt Mater (Amst). 90 (2019) 127–138. https://doi.org/10.1016/j.optmat.2019.02.024.
[20] D.S. Bobade, P.B. Undre, Synthesis and Luminescence Properties of Eu3+ Doped Sr2SiO4 Phosphor, Integrated Ferroelectrics. 205 (2020) 72–80. https://doi.org/10.1080/10584587.2019.1675001.
[21] P. Chaware, A. Nande, S.J. Dhoble, K.G. Rewatkar, Structural, photoluminescence and Judd-Ofelt analysis of red-emitting Eu3+ doped strontium hexa-aluminate nanophosphors for lighting application, Opt Mater (Amst). 121 (2021) 111542. https://doi.org/10.1016/j.optmat.2021.111542.
[22] C.S. McCamy, Correlated color temperature as an explicit function of chromaticity coordinates, Color Res Appl. 17 (1992) 142–144. https://doi.org/10.1002/col.5080170211.
[23] X. Huang, Q. Sun, B. Devakumar, Preparation, crystal structure, and photoluminescence properties of high-brightness red-emitting Ca2LuNbO6:Eu3+ double-perovskite phosphors for high-CRI warm-white LEDs, J Lumin. 225 (2020) 117373. https://doi.org/10.1016/j.jlumin.2020.117373.