• editor.aipublications@gmail.com
  • Track Your Paper
  • Contact Us
  • ISSN: 2456-866X

International Journal Of Chemistry, Mathematics And Physics(IJCMP)

Organic molecules visualizable by crystal data in introductory chemistry

Daisuke Noguchi


International Journal of Chemistry, Mathematics And Physics(IJCMP), Vol-6,Issue-3, May - June 2022, Pages 18-27 , 10.22161/ijcmp.6.3.3

Download | Downloads : 6 | Total View : 875

Article Info: Received: 21 Apr 2022; Received in revised form: 14 May 2022; Accepted: 20 May 2022; Available online: 24 May 2022

Share

Generating checklists could provide new insights into the teaching strategies. Thus, the crystal struc-tures’ data of organic compounds learned in secondary chemical education were collected from the Cambridge Crystallographic Data Centre (CCDC) database. It has revealed that almost all the crystal data of these organic molecules are available, contrarily to an anticipation that liquid or gaseous ones at room temperature have few data. This index data would be fundamental for further studies hereafter.

ICT teaching material, Molecular geometry, Structural chemistry, X-ray crystallography.

[1] K. Kasai, S. Omiya, S. Tambata, T. Mori, ICT teaching materials on molecular structures using crystal structure databases and their practical research, Jpn. Soc. Sci. Educ. Res. Rep. 2021, 35, 5. [In Japanese]
[2] T. Ito, K. Obara, K. Kamata, K. Kasai, Development of ICT teaching materials for molecular and crystal struc-tures using crystal structure databases, Bull. Inst. Inf. Lit. Competency Devel. Miyagi Univ. Educ. 2021, 1, 29. [In Japanese]
[3] K. Kasai, Y. Toda, T. Goto, M. Takahashi, M. Kamata, Construction of porous complexes for teaching material of molecular structure of alcohol by X-ray crystallog-raphy, Bull. Miyagi Univ. Educ. 2020, 54, 177. [In Japa-nese]
[4] K. Kasai, I. Hashimoto, M. Kamata, Y. Fujiwara, A. Midorikawa, D. Takasaki, Development of ICT teaching materials of molecular structure by X-ray crystallog-raphy, Jpn. Soc. Sci. Educ. Res. Rep. 2019, 34, 51. [In Japanese]
[5] K. Kasai, I. Hashimoto, N. Obara, S. Watanabe, Devel-opment of teaching material of crystal substances ex-tracted from commodities (II) ―Focusing on organic compounds in foods―, Bull. Miyagi Univ. Educ. 2019, 53, 159. [In Japanese]
[6] K. Kasai, S. Watanabe, Development of teaching mate-rial of crystal substances extracted from commodities (I) ―Focusing on urea―, Bull. Miyagi Univ. Educ. 2018, 52, 113. [In Japanese]
[7] K. Kasai, H. Yamada, S. Nara, Development of web-based teaching materials on molecular structures by X-ray crystallography, COMMUE 2017, 24, 15. [In Japa-nese]
[8] D. Noguchi, Bibliographic survey on crystal structures of sodium phenoxides to develop ICT teaching materials of molecular structures, Jpn. Soc. Sci. Educ. Res. Rep. 2020, 34, 23. [In Japanese]
[9] D. Noguchi, A possibility as ICT learning material of the crystal structure of sodium ethoxides, Proc. Kanto Reg. Conf. Soc. Jpn. Sci. Teach. 2020, 59, 69. [In Japanese]
[10] G. M. Battle, G. M. Ferrence, F. H. Allen, Applications of the Cambridge structural database in chemical educa-tion, J. Appl. Cryst. 2010, 43, 1208.
[11] G. M. Battle, F. H. Allen, G. M. Ferrence, Teaching 3D structural chemistry using crystal structure databases: 1. An interactive web-accessible teaching subset of the Cambridge structural database, J. Chem. Educ. 2010, 87, 809.
[12] G. M. Battle, F. H. Allen, G. M. Ferrence, Teaching 3D structural chemistry using crystal structure databases: 2. Example teaching units that utilise an interactive web-accessible subset of the Cambridge structural database, J. Chem. Educ. 2010, 87, 813.
[13] G. M. Battle, F. H. Allen, G. M. Ferrence, Teaching 3D structural chemistry using crystal structure databases: 3. The Cambridge structural database system - database content and access software in educational applications, J. Chem. Educ. 2011, 88, 886.
[14] G. M. Battle, F. H. Allen, G. M. Ferrence, Teaching 3D structural chemistry using crystal structure databases: 4. Advanced examples of discovery-based learning, J. Chem. Educ. 2011, 88, 891.
[15] X. Cao, Y. Huang, X. Jiang, Y. Su, J. Zhao, Phase dia-gram of water–methane by first-principles thermody-namics: Discovery of MH-IV and MH-V hydrates, Phys. Chem. Chem. Phys. 2017, 19, 15996.
[16] S. Bloodworth, G. Sitinova, S. Alom, S. Vidal, G. R. Bacanu, S. J. Elliott, M. E. Light, J. M. Herniman, G. J. Langley, M. H. Levitt, R. J. Whitby, First synthesis and characterization of CH₄@C₆₀, Angew. Chem. Int. Ed. 2019, 58, 5038.
[17] G. J. H. van Nes, A. Vos, Single-crystal structures and electron density distributions of ethane, ethylene and acetylene. I. Single-crystal X-ray structure determina-tions of two modifications of ethane, Acta Cryst. 1978, B34, 1947.
[18] R. Boese, H.-C. Weiss, D. Bläser, The melting point alternation in the short-chain n-alkanes: Single-crystal X-ray analyses of propane at 30 K and of n-butane to n-nonane at 90 K, Angew. Chem. Int. Ed. 1999, 38, 988.
[19] R. D. Burbank, The crystal structure of methyl chloride at -125°, J. Am. Chem. Soc. 1953, 75, 1211.
[20] T. Kawaguchi, K. Tanaka, T. Takeuchi, T. Watanabé, The crystal structure of methylene bichloride, CH₂Cl₂, Bull. Chem. Soc. Jpn. 1973, 46, 62.
[21] D. S. Yufit, J. A. K. Howarda, Low-melting molecular complexes of chloroform, CrystEngComm 2010, 12, 737.
[22] G. J. Piermarini, A. B. Braun, Crystal and molecular structure of CCl₄ III: A high pressure polymorph at 10 kbar, J. Chem. Phys. 1973, 58, 1974.
[23] F. Bertolotti, G. Gervasio, Crystal structure of iodoform at 106 K and of the adduct CHI₃⋅3(C₉H₇N). Iodoform as a building block of co-crystals, J. Mol. Struct. 2013, 1036, 305.
[24] D. J. Wolstenholme, K. N. Robertson, E. M. Gonzalez, T. S. Cameron, A topological investigation of the non-linear optical compound:  Iodoform octasulfur, J. Phys. Chem. A 2006, 110, 12636.
[25] R. Bhola, P. Payamyar, D. J. Murray, B. Kumar, A. J. Teator, M. U. Schmidt, S. M. Hammer, A. Saha, J. Sa-kamoto, A. D. Schlüter, B. T. King, A two-dimensional polymer from the anthracene dimer and triptycene mo-tifs, J. Am. Chem. Soc. 2013, 135, 14134.
[26] A. Stein, C. W. Lehmann, P. Luger, Crystal structure of cyclobutane at 117 K, J. Am. Chem. Soc. 1992, 114, 7684.
[27] A. Torrisi, C. K. Leech, K. Shankland, W. I. F. David, R. M. Ibberson, J. Benet-Buchholz, R. Boese, M. Leslie, C. R. A. Catlow, S. L. Price, Solid phases of cyclopen-tane: Combined experimental and simulation study, J. Phys. Chem. B 2008, 112, 3746.
[28] R. Kahn, R. Fourme, D. André, M. Renaud, Crystal structure of cyclohexane I and II, Acta Cryst. 1973, B29, 131.
[29] G. Smith, C. H. L. Kennard, A. H. White, Insecticides. Part V. Crystal structures of β-(eeeeee)-1,2,3,4,5,6-hexachlorocyclohexane and γ-(aaaeee)-1,2,3,4,5,6-hexachlorocyclohexane (lindane) (redeterminations), J. Chem. Soc. Perkin Trans. 2 1976, 5, 614.
[30] G. J. H. van Nes, V. A. Vos, Single-crystal structures and electron density distributions of ethane, ethylene and acetylene. III. Single-crystal X-ray structure deter-mination of ethylene at 85 K, Acta Cryst. 1979, B35, 2593.
[31] E. D. Bloch, W. L. Queen, R. Krishna, J. M. Zadrozny, C. M. Brown, J. R. Long, Hydrocarbon separations in a metal-organic framework with open Iron(II) coordina-tion sites, Science 2012, 335, 1606.
[32] B. R. Barnett, S. T. Parker, M. V. Paley, M. I. Gonzalez, N. Biggins, J. Oktawiec, J. R. Long, Thermodynamic separation of 1-butene from 2-butene in metal–organic frameworks with open metal sites, J. Am. Chem. Soc. 2019, 141, 18325.
[33] R. M. Ibberson, M. T. F. Telling, S. Parsons, Crystal structures and glassy phase transition behavior of cyclo-hexene, Cryst. Growth Des. 2008, 8, 512.
[34] T. Sugawara, E. Kanda, The crystal structure of acety-lene. I, Sci. Rep. Res. Inst., Tohoku Univ. Ser. A, Phys., Chem. Metall. 1952, 4, 607.
[35] G.-X. Jin, T. Wang, T.-X. Yue, X.-K. Wang, F. Dai, X.-W. Wu, Q.-K. Liu, J.-P. Ma, Cd-MOF: Specific adsorp-tion selectivity for linear alkyne (propyne, 2-butyne and phenylacetylene) molecules, Chem. Comm. 2021, 57, 13325.
[36] D. Mootz, A. Deeg, 2-Butyne and hydrogen chloride cocrystallized: Solid-state geometry of Cl–H···π hydro-gen bonding to the carbon–carbon triple bond, J. Am. Chem. Soc. 1992, 114, 5887.
[37] M. T. Kirchner, D. Das, R. Boese, Cocrystallization with acetylene: Molecular complex with methanol, Cryst. Growth Des. 2008, 8, 763.
[38] D. S. Yufit, J. A. K. Howarda, Low-melting molecular complexes of chloroform, CrystEngComm 2010, 12, 737.
[39] R. K. McMullan, Å. Kvick, P. Popelier, Structures of cubic and orthorhombic phases of acetylene by single-crystal neutron diffraction, Acta Cryst. 1992, B48, 726.
[40] M. Beske, S. Cronje, M. U. Schmidt, L. Tapmeyer, Dis-ordered sodium alkoxides from powder data: Crystal structures of sodium ethoxide, propoxide, butoxide and pentoxide, and some of their solvates, Acta Cryst. 2021, B77, 68.
[41] M. Bolte, CCDC 234763: Experimental crystal structure determination, CSD Comm. 2004.
[42] B. Dittrich, T. Koritsanszky, A. Volkov, S. Mebs, P. Luger, Novel approaches to the experimental charge density of Vitamin B₁₂, Angew. Chem. Int. Ed. 2007, 46, 2935.
[43] J. Ridout, M. R. Probert, Low-temperature and high-pressure polymorphs of isopropyl alcohol, CrystEngComm 2014, 16, 7397.
[44] P. Derollez, A. Hédoux, Y. Guinet, F. Danède, L. Pac-cou, Structure determination of the crystalline phase of n-butanol by powder X-ray diffraction and study of in-termolecular associations by Raman spectroscopy, Acta Cryst. 2013, B69, 195.
[45] M. Podsiadło, E. Patyk, A. Katrusiak, Chiral aggrega-tion hierarchy in high-pressure resolved 2-butanol and 2,3-butanediol, CrystEngComm 2012, 14, 6419.
[46] C. H. Görbitz, L-Leucyl-L-leucine 2-methyl-1-propanol solvate, Acta Cryst. 1999, C55, 670.
[47] P. A. McGregor, D. R. Allan, S. Parsons, S. J. Clark, Hexamer formation in tertiary butyl alcohol (2-methyl-2-propanol, C₄H₁₀O), Acta Cryst. 2006, B62, 599.
[48] R. Boese, H.-C. Weiss, 1,2-Ethanediol (ethylene glycol) at 130K, Acta Cryst. 1998, C54, IUC9800024.
[49] T. Kusukawa, G. Niwa, T. Sasaki, R. Oosawa, W. Himeno, M. Kato, Observation of a hydrogen-bonded 3D structure of crystalline glycerol, Bull. Chem. Soc. Jpn. 2013, 86, 351.
[50] K. Vojinović, U. Losehand, N. W. Mitzel, Di-chlorosilane–dimethyl ether aggregation: a new motif in halosilane adduct formation, Dalton Trans. 2004, 2578.
[51] D. André, R. Fourme, K. Zechmeister, Crystal and mo-lecular structure of diethyl ether at 128°K, Acta Cryst. 1972, B28, 2389.
[52] S.-X. Weng, B. H. Torrie, B. M. Powell, The crystal structure of formaldehyde, Mol. Phys. 1989, 68, 25.
[53] M. T. Kirchner, D. Bläser, R. Boese, Co-crystals with acetylene: small is not simple!, Chem. Eur. J. 2010, 16, 2131.
[54] H. Lv, L. Zhu, Y.-Q. Tang, J.-M. Lu, Structure–activity relationship of N-heterocyclic carbene–Pd(II)–imidazole complexes in Suzuki–Miyaura coupling between 4-methoxyphenyl chloride and phenylboronic acid, Appl. Organomet. Chem. 2013, 28, 27.
[55] H. E. Maynard-Casely, N. S. Yevstigneyev, S. G. Duy-ker, C. Ennis, The crystal structure, thermal expansion and far-IR spectrum of propanal (CH₃CH₂CHO) deter-mined using powder X-ray diffraction, neutron scatter-ing, periodic DFT and synchrotron techniques, Phys. Chem. Chem. Phys. 2022, 24, 122.
[56] D. R. Allan, S. J. Clark, R. M. Ibberson, S. Parsons, C. R. Pulham, L. Sawyer, The influence of pressure and temperature on the crystal structure of acetone, Chem. Comm. 1999, 8, 751.
[57] A. Albinati, K. D. Rouse, M. W. Thomas, Neutron powder diffraction analysis of hydrogen-bonded solids. II. Structural study of formic acid at 4.5 K, Acta Cryst. 1978, B34, 2188.
[58] D. Wiechert, D. Mootz, T. Dahlems, The formic acid 1D array with H bonds all reversed:  Structure of a cocrystal with hydrogen fluoride, J. Am. Chem. Soc. 1997, 119, 12665.
[59] A. Dawson, D. R. Allan, P. Parsons, M. Ruf, Use of a CCD diffractometer in crystal structure determinations at high pressure, J. Appl. Cryst. 2004, 37, 410.
[60] A. D. Boese, M. Kirchner, G. A. Echeverria, R. Boese, Ethyl acetate: X-ray, solvent and computed structures, ChemPhysChem 2013, 14, 799.
[61] T. S. Cameron, K. M. Mannan, M. O. Rahman, The crystal structure of sodium acetate trihydrate, Acta Cryst. 1976, B32, 87.
[62] E. A. Klop, A. Schouten, P. van der Sluis, A. L. Spek, Structure of calcium acetate monohydrate, Ca(CH₃COO)₂·H₂O, Acta Cryst. 1984, C40, 51.
[63] R. W. Seidel, R. Goddard, N. Nöthling, C. W. Leh-mann, Acetic anhydride at 100 K: the first crystal struc-ture determination, Acta Cryst. 2016, C72, 753.
[64] F. J. Strieter, D. H. Templeton, R. F. Scheuerman, R. L. Sass, The crystal structure of propionic acid, Acta Cryst. 1962, 15, 1233.
[65] A. Johnston, A. J. Florence, F. J. A. Fabbiani, K. Shank-land, C. T. Bedford, Cytenamide-butyric acid (1/1), Ac-ta Cryst. 2008, E64, o1295.
[66] J. L. Derissen, P. H. Smith, Refinement of the crystal structures of anhydrous α- and β-oxalic acids, Acta Cryst. 1974, B30, 2240.
[67] F. R. Ahmed, D. W. J. Cruickshank, A refinement of the crystal structure analyses of oxalic acid dihydrate, Acta Cryst. 1953, 6, 385.
[68] D. A. Reed, M. M. Olmstead, Sodium oxalate structure refinement, Acta Cryst. 1981, B37, 938.
[69] N. S. Blom, J. A. Kanters, W. M. M. Heijnen, Calcium oxalate trihydrate, CaC₂O₄·3H₂O, Cryst. Struct. Comm. 1981, 10, 1283.
[70] H. Küppers, The crystal structure of ammonium hydro-gen oxalate hemihydrate, Acta Cryst. 1973, B29, 318.
[71] M. Currie, J. C. Speakman, N. A. Curry, The crystal structures of the acid salts of some dibasic acids. Part I. A neutron-diffraction study of ammonium (and potassi-um) tetroxalate, J. Chem. Soc. A 1967, 1862.
[72] J. Vijayalakshmi, R. Srinivasan, The structure of hexa-methylenediammonium bis(monohydrogen oxalate) monohydrate, C₆H₁₈N₂²⁺.2C₂HO₄⁻.H₂O, Acta Cryst. 1983, C39, 908.
[73] E. A. Losev, B. A. Zakharov, T. N. Drebushchak, E. V. Boldyreva, Glycinium semi-malonate and a glutaric ac-id-glycine cocrystal: New structures with short O-H...O hydrogen bonds, Acta Cryst. 2011, C67, o297.
[74] R. S. Gopalan, P. Kumaradhas, G. U. Kulkarni, Struc-tural phase transition in adipic acid, J. Solid State Chem. 1999, 148, 129.
[75] H.-S. Chang, J.-L. Lin, Urea–adipic acid (2/1), Acta Cryst. 2011, E67, o1317.
[76] M. N. G. James, G. J. B. Williams, A refinement of the crystal structure of maleic acid, Acta Cryst. 1974, B30, 1249.
[77] J. V. Pratap, R. Ravishankar, M. Vijayan, X-ray studies on crystalline complexes involving amino acids and pep-tides. XXXV. Invariance and variability in amino acid aggregation in the complexes of maleic acid with L-histidine and L-­lysine, Acta Cryst. 2000, B56, 690.
[78] M. Lutz, Maleic anhydride, redetermination at 130 K, Acta Cryst. 2001, E57, o1136.
[79] C. J. Brown, The crystal structure of fumaric acid, Acta Cryst. 1966, 21, 1.
[80] S. Aitipamula, A. B. H. Wong, P. S. Chowa, R. B. H. Tan, Pharmaceutical cocrystals of ethenzamide: Struc-tural, solubility and dissolution studies, CrystEngComm 2012, 14, 8515.
[81] H. Kusanagi, Y. Chatani, H. Tadokoro, The crystal structure of isotactic poly(methyl methacrylate): Pack-ing-mode of double stranded helices, Polymer 1994, 35, 2028.
[82] F. Kaneko, M. Kobayashi, Y. Kitagawa, Y. Matsuura, Structure of stearic acid E form, Acta Cryst. 1990, C46, 1490.
[83] A. van Langevelde, R. Peschar, H. Schenk, Structure of β-trimyristin and β-tristearin from high-resolution X-ray powder diffraction data, Acta Cryst. 2001, B57, 372.
[84] L. A. Smith, R. B. Hammond, K. J. Roberts, D. Machin, G. McLeod, Determination of the crystal structure of anhydrous sodium dodecyl sulphate using a combination of synchrotron radiation powder diffraction and mo-lecular modelling techniques, J. Mol. Struct. 2000, 554, 173.
[85] V. M. Coiro, M. Manigrasso, F. Mazza, G. Pochetti, Structure of a triclinic phase of sodium dodecyl sulfate monohydrate. A comparison with other sodium dodecyl sulfate crystal phases, Acta Cryst. 1987, C43, 850.
[86] A. A. Espenbetov, M. Y. Antipin, Y. T. Struchkov, V. A. Philippov, V. G. Tsirel'son, R. P. Ozerov, B. S. Svet-lov, Structure of 1,2,3-propanetriol trinitrate (β Modifi-cation), C₃H₅N₃O₉, Acta Cryst. 1984, C40, 2096.
[87] W. P. Binnie, J. M. Robertson, The crystal structure of hexamethylenediamine, Acta Cryst. 1950, 3, 424.
[88] F. K. Winkler, J. D. Dunitz, Medium-ring compounds. XIX. Caprolactam: structure refinement, Acta Cryst. 1975, B31, 268.
[89] J. Yang, C. T. Hu, E. Reiter, B. Kahr, Ambient L-lactic acid crystal polymorphism, CrystEngComm 2021, 23, 2644.
[90] Y. Okaya, N. R. Stemple, M. I. Kay, Refinement of the structure of D-tartaric acid by X-ray and neutron dif-fraction, Acta Cryst. 1966, 21, 237.
[91] R. Kuroda, S. F. Mason, Crystal structures of dextroro-tatory and racemic sodium ammonium tartrate, J. Chem. Soc., Dalton Trans. 1981, 6, 1268.
[92] Y. Iitaka, The crystal structure of γ-glycine, Acta Cryst. 1961, 14, 1.
[93] H. J. Jr. Simpson, R. E. Marsh, The crystal structure of L-alanine, Acta Cryst. 1966, 550.
[94] A. V. Churakov, P. V. Prikhodchenko, J. A. K. How-ard, O. Lev, Glycine and l-serine crystalline perhydrates, Chem. Comm. 2009, 28, 4224.
[95] G. M. Brown, H. Levy, α-D-Glucose: Precise determina-tion of crystal and molecular structure by neutron-diffraction analysis, Science 1965, 147, 1038.
[96] W. G. Ferrier, The crystal and molecular structure of β-D-glucose, Acta Cryst. 1963, 16, 1023.
[97] J. Guo, Y. Lu, R. Whiting, Metal-ion interactions with sugars. The crystal structure of CaCl₂-fructose complex, Bull. Korean Chem. Soc. 2012, 33, 2028.
[98] F. Takusagawa, R. A. Jacobson, The crystal and molecu-lar structure of α-maltose, Acta Cryst. 1978, B34, 213.
[99] M. Bolte, M. Amon, CCDC 156796: Experimental crys-tal structure determination, CSD Comm. 2001.
[100] Y. Nishiyama, P. Langan, H. Chanzy, Crystal structure and hydrogen-bonding system in cellulose Iβ from syn-chrotron X-ray and neutron fiber diffraction, J. Am. Chem. Soc. 2002, 124, 9074.
[101] G. J. Piermarini, A. D. Mighell, C. E. Weir, S. Block, Crystal Structure of Benzene II at 25 Kilobars, Science 1969, 165, 1250.
[102] H. E. Maynard-Casely, R. Hodyss, M. L. Cable, T. H. Vu, M. Rahm, A co-crystal between benzene and ethane: A potential evaporite material for Saturn's moon Titan, IUCrJ 2016, 3, 192.
[103] A. V. Vasilyev, S. V. Lindeman, J. K. Kochi, Molecular structures of the metastable charge-transfer complexes of benzene (and toluene) with bromine as the pre-reactive intermediates in electrophilic aromatic bromina-tion, New J. Chem. 2002, 26, 582.
[104] R. M. Ibberson, W. I. F. David, M. Prager, Accurate determination of hydrogen atom positions in α-toluene by neutron powder diffraction, J. Chem. Soc., Chem. Comm. 1992, 19, 1438.
[105] A. V. Vasilyev, S. V. Lindeman, J. K. Kochi, Noncova-lent binding of the halogens to aromatic donors. Dis-crete structures of labile Br₂ complexes with benzene and toluene, Chem. Comm. 2001, 10, 909.
[106] R. M. Ibberson, C. Morrison, M. Prager, Neutron pow-der and ab initio structure of ortho-xylene: the influence of crystal packing on phenyl ring geometry at 2 K, Chem. Comm. 2000, 7, 539.
[107] R. M. Ibberson, W. I. F. David, S. Parsons, M. Prager, K. Shankland, The crystal structures of m-xylene and p-xylene, C₈D₁₀, at 4.5 K, J. Mol. Struct. 2000, 524, 121.
[108] H. van Koningsveld, A. J. van den Berg, J. C. Jansen, R. de. Goede, On a possible substitution of p-xylene by toluene in p-xylene crystals. The crystal structure of p-xylene, C₈H₁₀, at 180 K, Acta Cryst. 1986, B42, 491.
[109] N. Yasuda, H. Uekusa, Y. Ohashi, Styrene at 83 K, Acta Cryst. 2001, E57, o1189.
[110] H. C. Alt, J. Kalus, X-ray powder diffraction investiga-tion of naphthalene up to 0.5 GPa, Acta Cryst. 1982, B38, 2595.
[111] A. Banerjee, C. J. Brown, Picric acid-naphthalene 1/1 π complex, C₆H₃N₃O₇.C₁₀H₈. A disordered structure, Acta Cryst. 1985, C41, 82.
[112] R. Mason, The crystallography of anthracene at 95°K and 290°K, Acta Cryst. 1964, 17, 547.
[113] N. K. Nath, P. Naumov, In situ crystallization and crys-tal structure determination of chlorobenzene, Maced. J. Chem. Chem. Eng. 2015, 34, 63.
[114] G. L. Wheeler, S. D. Colson, γ-Phase p-dichlorobenzene at 100 K, Acta Cryst. 1975, B31, 911.
[115] M. V. Korobov, A. L. Mirakian, N. V. Avramenko, E. F. Valeev, I. S. Neretin, Y. L. Slovokhotov, A. L. Smith, G. Olofsson, R. S. Ruoff, C₆₀·bromobenzene solvate:  Crystallographic and thermochemical studies and their relationship to C₆₀ solubility in bromobenzene, J. Phys. Chem. B 1998, 102, 3712.
[116] R. Boese, D. Bläser, M. Nussbaumer, T. M. Krygowski, Low temperature crystal and molecular structure of ni-trobenzene, Struct. Chem. 1992, 3, 363.
[117] J. Trotter, C. S. Williston, Bond lengths and thermal vibrations in m-dinitrobenzene, Acta Cryst. 1966, 21, 285.
[118] J. C. Barnes, T. J. R. Weakley, CCDC 262933: Experi-mental crystal structure determination, CSD Comm. 2005.
[119] W. R. Carper, L. P. Davis, M. W. Extine, Molecular structure of 2,4,6-trinitrotoluene, J. Phys. Chem. 1982, 86, 459.
[120] K. B. Landenberger, A. J. Matzger, Cocrystal engineer-ing of a prototype energetic material: Supramolecular chemistry of 2,4,6-trinitrotoluene, Cryst. Growth Des. 2010, 10, 5341.
[121] P. Manana, E. C. Hosten, R. Betz, Crystal structure of benzenesulphonic acid, Z. Kristallogr. NCS 2021, 236, 97.
[122] J. P. Smit, CCDC 2067592: Experimental crystal struc-ture determination, CSD Comm. 2021.
[123] S. M. Martin, J. Yonezawa, M. J. Horner, C. W. Macos-ko, M. D. Ward, Structure and rheology of hydrogen bond reinforced liquid crystals, Chem. Mater. 2004, 16, 3045.
[124] D. R. Allan, S. J. Clark, A. Dawson, P. A. McGregor, S. Parsons, Pressure-induced polymorphism in phenol, Acta Cryst. 2002, B58, 1018.
[125] W. Fang, X. Ye, Y. Zhang, Y. Zhang, S. Jin, W. Xu, D. Wang, Nine supramolecular adducts of 4-dimethylaminopyridine and organic acids constructed by classical H-bonds and some noncovalent interactions, J. Mol. Struct. 2020, 1202, 127321.
[126] L. Tatar, G. Gökagac, D. Ülkü, (2,4,6-tribromophenolato-O)copper(II), Acta Cryst. 2000, C56, 668.
[127] R. E. Dinnebier, M. Pink, J. Sieler, P. W. Stephens, Novel alkali-metal coordination in phenoxides:  Powder diffraction results on C₆H₅OM (M = Li, Na, K, Rb, Cs), Inorg. Chem. 1997, 36, 3398.
[128] M. Kunert, E. Dinjus, M. Nauck, J. Sieler, Structure and reactivity of sodium phenoxide - Following the course of the Kolbe-Schmitt reaction, Chem. Ber. 1997, 130, 1461.
[129] J. Sieler, M. Pink, G. Zahn, Zur Struktur von zwei Hy-draten des Natriumphenolats: C₆H₅ONa·H₂O und C₆H₅ONa·3H₂O, Z. Anorg. Allg. Chem. 1994, 620, 743.
[130] M. Kunert, G. Zahn, J. Sieler, Methanol als Ligand in Natriumphenolat: Darstellung und Struktur von [Na(CH₃OH)₄][OC₆H₅], Z. Anorg. Allg. Chem. 1995, 621, 1597.
[131] W. Czado, U. Müller, Crystal structure of sodium phe-nolate-acetonitrile (1/1), NaOC₆H₅·CH₃CN, Kristallogr. NCS 1999, 214, 63.
[132] I. D. H. Oswald, W. A. Crichton, Structural similarities of 2-chlorophenol and 2-methylphenol, CrystEngComm 2009, 11, 463.
[133] N. Wang, H. Hao, H. Lu, R. Xu, Molecular recognition and self-assembly mechanism of cocrystallization pro-cesses, CrystEngComm 2017, 19, 3746.
[134] E. Batisai, V. J. Smith, S. A. Bourne, N. B. Báthori, Solid state structures of p-cresol revisited, CrystEngComm 2015, 17, 5134.
[135] C. J. Brown, The crystal structure of catechol, Acta Cryst. 1966, 21, 170.
[136] Q. Zhu, A. G. Shtukenberg, D. J. Carter, T.-Q. Yu, J. Yang, M. Chen, P. Raiteri, A. R. Oganov, B. Pokroy, I. Polishchuk, P. J. Bygrave, G. M. Day, A. L. Rohl, M. E. Tuckerman, B. Kahr, Resorcinol crystallization from the melt: A new ambient phase and new “Riddles”, J. Am. Chem. Soc. 2016, 138, 4881.
[137] K. Maartmann-Moe, The crystal structure of γ-hydroquinone, Acta Cryst. 1966, 21, 979.
[138] J.-P. Torré, R. Coupan, M. Chabod, E. Pere, S. Labat, A. Khoukh, R. Brown, J.-M. Sotiropoulos, H. Gornitz-ka, CO₂–hydroquinone clathrate: Synthesis, purification, characterization and crystal structure, Cryst. Growth Des. 2016, 16, 5330.
[139] K. Harata, K. Uekama, M. Otagiri, F. Hirayama, Y. Ohtani, The structure of the cyclodextrin complex. XVIII. Crystal structure of β-cyclodextrin–benzyl alco-hol (1:1) complex pentahydrate, Bull. Chem. Soc. Jpn. 1985, 58, 1234.
[140] N. T. Tran, T. Min, A. K. Franz, Silanediol hydrogen bonding activation of carbonyl compounds, Chem. Eur. J. 2011, 17, 9897.
[141] D. C. Haagenson, G. R. Lief, L. Stahl, R. J. Staples, N-versus O-silylation in cis-[(ᵗBuHN)O=P(μ-NᵗBu)₂P=O(NHᵗBu)] and [Me₂Si(μ-NᵗBu)₂P=O(NHPh)]. Solid-state structures of their si-lylation products, of co-crystalline cis-[(ᵗBuHN)O=P(μ-NᵗBu)₂P=O(NHᵗBu)], and of {[Me₂Si(μ-NᵗBu)₂=O(N(SiMe₃)Ph)]VCl₃}, J. Organomet. Chem. 2008, 693, 2748.
[142] H. Osseili, K.-N. Truong, T. P. Spaniol, D. Mukherjee, U. Englert, J. Okuda, Mononuclear alkali metal organ-operoxides stabilized by an NNNN-macrocycle and short hydrogen bonds from ROOH molecules, Chem. Eur. J. 2017, 23, 17213.
[143] G. Bruno, L. Randaccio, A refinement of the benzoic acid structure at room temperature, Acta Cryst. 1980, B36, 1711.
[144] O. Ermer, Ungewöhnliches Strukturmerkmal kristalliner Phthalsäure, Helv. Chim. Acta 1981, 64, 1902.
[145] J. Xie, W. Wen, Y. Xuan, Crystal structure of a hydrate complex of phthalic acid [phth = o-phthalate], Anal. Sci.: X-ray Struct. Anal. Online 2008, 24, x95.
[146] R. B. Bates, R. S. Cutler, Phthalic anhydride, Acta Cryst. 1977, B33, 893.
[147] R. P. Sharma, R. Bala, R. Sharma, B. M. Kariuki, U. Rychlewska, B. Warżajtis, Role of second-sphere coor-dination in anion binding: Synthesis, characterization and X-ray structure of hexaamminecobalt(III) chloride hydrogen phthalate trihydrate and sodium hexaam-minecobalt(III) benzoate monohydrate, J. Mol. Struct. 2005, 748, 143.
[148] J. L. Derissen, The crystal structure of isophthalic acid, Acta Cryst. 1974, B30, 2764.
[149] M. Bailey, C. J. Brown, The crystal structure of tereph-thalic acid, Acta Cryst. 1967, 22, 387.
[150] W. Cochran, The crystal and molecular structure of sali-cylic acid, Acta Cryst. 1953, 6, 260.
[151] E. T. Spielberg, P. S. Campbell, K. C. Szeto, B. Mallick, J. Schaumann, A.-V. Mudring, Sodium salicylate: An in-depth thermal and photophysical study, Chem. Eur. J. 2018, 24, 15638.
[152] M. Kawahata, S. Komagawa, K. Ohara, M. Fujita, K. Yamaguchi, High-resolution X-ray structure of methyl salicylate, a time-honored oily medicinal drug, solved by crystalline sponge method, Tetrahedron Lett. 2016, 57, 4633.
[153] T. Matsumoto, A. Yamano, T. Sato, J. D. Ferrara, F. J. White, M. Meyer, "What is this?" A structure analysis tool for rapid and automated solution of small molecule structures, J. Chem. Cryst. 2021, 51, 438.
[154] M. Fukuyo, K. Hirotsu, T. Higuchi, The structure of aniline at 252 K, Acta Cryst. 1982, B38, 640.
[155] A. R. Choudhury, D. S. Yufit, J. A. K. Howard, In situ co-crystallization of cresols with aniline and fluoroan-ilines: Subtle interplay of strong and weak hydrogen bonds, Z. Kristallogr. Cryst. Mater. 2014, 229, 625.
[156] K. M. Anderson, A. E. Goeta, K. S. B. Hancock, J. W. Steed, Unusual variations in the incidence of Z′ > 1 in oxo-anion structures, Chem. Comm. 2006, 20, 2138.
[157] C. Rømming, The structure of benzene diazonium chlo-ride, Acta Chem. Scand. 1963, 17, 1444.
[158] V. R. Hathwar, T. S. Thakur, T. N. G. Row, G. R. De-siraju, Transferability of multipole charge density pa-rameters for supramolecular synthons: A new tool for quantitative crystal engineering, Cryst. Growth Des. 2011, 11, 616.
[159] F. S. Ihlefeldt, F B. Pettersen, A. von Bonin, M. Zawadzka, C. H. Görbitz, The polymorphs of L-phenylalanine, Angew. Chem. Int. Ed. 2014, 53, 13600.
[160] É. B. Shamuratov, A. S. Batsanov, Y. T. Struchkov, A. Shukurov, A. G. Makhsumov, V. K. Sabirov, Crystal structure of 4-hydroxyazobenzene, J. Struct. Chem. 1991, 32, 447.
[161] J. Shi, D.-S. Guo, F. Ding, Y. Liu, Unique regioselective binding of permethylated β-cyclodextrin with azoben-zene derivatives, Eur. J. Org. Chem. 2009, 6, 923.
[162] Y. Liu, Y.-L. Zhao, Y. Chena, D.-S. Guo, Assembly behavior of inclusion complexes of β-cyclodextrin with 4-hydroxyazobenzene and 4-aminoazobenzene, Org. Bi-omol. Chem. 2005, 3, 584.
[163] C.-y. Liu, V. Lynch, A. J. Bard, Effect of an electric field on the growth and optoelectronic properties of quasi-one-dimensional organic single crystals of 1-(phenylazo)-2-naphthol, Chem. Mater. 1997, 9, 943.
[164] A. R. Kennedy, B. A. Kirkhouse, K. M. McCarney, O. Puissegur, W. E. Smith, E. Staunton, J. Teat, J. C. Cher-ryman, R. James, Supramolecular motifs in s-block met-al-bound sulfonated monoazo dyes, part 1: Structural class controlled by cation type and modulated by sul-fonate aryl ring position, Chem. Eur. J. 2004, 10, 4606.
[165] N. J. Burke, A. D. Burrows, M. F. Mahona, S. J. Teat, Incorporation of sulfonate dyes into hydrogen-bonded networks, CrystEngComm 2004, 6, 429.
[166] J. B. Benedict, D. E. Cohen, S. Lovell, A. L. Rohl, B. K., What is syncrystallization? States of the pH indica-tor methyl red in crystals of phthalic acid, J. Am. Chem. Soc. 2006, 128, 5548.
[167] L. J. Fitzgerald, R. E. Gerkin, Phenolphthalein and 3',3''-dinitrophenolphthalein, Acta Cryst. 1998, C54, 535.
[168] H. Sugiura, T. Kato, H. Senda, K. Kunimoto, A. Ku-wae, K. Hanai, Crystal structure of phenolphthalein, Anal. Sci. 1999, 15, 611.
[169] R. C. Medrud, The crystal structure of ninhydrin, Acta Cryst. 1969, B25, 213.
[170] H. H. Mooy, Crystal structure of methane, Nature 1931, 127, 707.
[171] M. T. Kirchner, R. Boese, W. E. Billups, L. R. Norman, Gas hydrate single-crystal structure analyses, J. Am. Chem. Soc. 2004, 126, 9407.
[172] G. L. Geis, Checklisting, J. Instr. Dev. 1984, 7, 2.