• editor.aipublications@gmail.com
  • Track Your Paper
  • Contact Us
  • ISSN: 2456-866X

International Journal Of Chemistry, Mathematics And Physics(IJCMP)

Electron Diffusion and Phonon Drag Thermopower in Silicon Nanowires

Kasala Suresha


International Journal of Chemistry, Mathematics And Physics(IJCMP), Vol-6,Issue-1, January - February 2022, Pages 1-4 , 10.22161/ijcmp.6.1.1

Download | Downloads : 6 | Total View : 736

Article Info: Received: 09 Dec 2021; Received in revised form: 08 Jan 2022; Accepted: 14 Jan 2022; Available online: 24 Jan 2022

Share

The field of thermoelectric research has undergone a renaissance and boom in the fast two decades, largely fueled by the prospect of engineering electronic and phononic properties in nanostructures, among which semiconductor nanowires (NWs) have served both as an important platform to investigate fundamental thermoelectric transport phenomena and as a promising route for high thermoelectric performance for device applications. In this report we theoretical studied the carrier diffusion and phonon-drag contribution to thermoelectric performance of silicon nanowires and compared with the existing experimental data. We observed a good agreement between theoretical data and experimental observations in the overall temperature range from 50 – 350 K. Electron diffusion thermopower is found to be dominant mechanism in the low temperature range and shows linear dependence with temperature.

Electron diffusion, Mott formula, Phonon drag, Silicon nanowire, Thermopower.

[1] J. Seyler and M. N. Wybourne, Phys. Rev. Lett. 69, 1427, (1992)
[2] Z. V. Popvic, J. Spitzer, T. Ruf, M. Cardona, R. Notzel, and K. Ploog Phys. Rev. B 48, 1659 (1993)
[3] A. Tanaka, S. Onari, and T. Arai, Phys. Rev. B 47, 1237 (1993)
[4] P V Santos, A K Sood, M Cardona, K Ploog, Y Ohmori, and H Okamoto, Phys. Rev. B 37, 6381 (1988)
[5] N Mori and T Ando, Phys. Rev. B 40, 6175 (1989)
[6] H Rucker, E Molinari, and P Lugli, Phys. Rev. B 45, 6747 (1992)
[7] M A Stroscio, G J Iafrate, K W Kim, M A Littlejohn, A R Bhatt,and M Dutta, in Integrated Optics and Optoelectronic, edited by K.-K. Wong and M. Razeghi~SPIE, Bellingham, Vol. CR45, p. 341 (1993)
[8] B Hillebrands, S Lee, G I Stegeman, H Cheng, J E Potts and F Nizzoli, Phys. Rev. Lett. 60, 832 (1988),
[9] H Benistry, C M Sotomayor-Torre´s, and C Weisbuch, Phys. Rev. B 44, 10945 (1991)
[10] N Nishiguchi, Phys. Rev. B 50, 10970 (1994)
[11] N Bannov, V. Mitin, and M. A. Stroscio, Phys. Status Solidi B 183, 131 (1994)
[12] S Yu, K W Kim, M A Stroscio, G J Iafrate, and A Ballato, Phys. Rev. B 50, 1733 (1994)
[13] M Watt, H E G Arnot, C M Sotomayor-Torre´s, and S P Beaumont, in Nanostructure Physics and Fabrication, edited by M A Reed and W P Kirk ~Academic, Boston, p. 89. (1989)
[14] D K C MacDonald,. Thermoelectricity: An Introduction to the Principles (Wiley, New York, 1962).
[15] L D Hicks and M S Dresselhaus, Phys. Rev. B 47, 16631–16634 (1993)
[16] G D Mahan and J O Sofo, Proc. Nat. Acad. Sci. USA 93, 7436–7439 (1996)
[17] T E Humphrey, and H Linke, Phys. Rev. Lett. 94, 096601 (2005)
[18] A Boukai, K Xu, and J R Heath, Adv. Mater. 18, 864–869 (2006)
[19] L Yu-Ming, Appl. Phys. Lett. 81, 2403–2405 (2002)
[20] T C Harman et al,. Science, 297, 2229 (2002)
[21] K F Hsu et al., Science 303, 818–821 (2004)
[22] A Majumdar, Science 303, 777–778 (2004)
[23] L Weber and E Gmelin, Appl. Phys. A 53, 136–140 (1991)
[24] S S Kubakaddi, Phys. Rev. B, 79, 075417 (2009)
[25] R Landgren, P Laurell and G A Fiete, Phys. Rev. B, 90, 105115 (2014)
[26] Akram I Boukai, Yuri Bunimovich, Jamil-Kheli, Jen-Kan Yu, William A Goddard and James R Heath, nature LETTERS, 451, 168 (2008)
[27] Mott N F, Davis E A, Electronic processes in Non-crystalline Materials, Oxford:Clarendon, (1979)
[28] Kasala Suresha, Int. J. Res. Appl. Sci. and Engg. Tech. 9, 39 (2021)
[29] A Parari, N Khan and P Mandal, arXiv:1502.02264 (2015)