• editor.aipublications@gmail.com
  • Track Your Paper
  • Contact Us
  • ISSN: 2456-866X

International Journal Of Chemistry, Mathematics And Physics(IJCMP)

Biological and Medical Applications of Graphene Nanoparticles

Ch. Kanchana Latha , Ramchander Merugu


International Journal of Chemistry, Mathematics And Physics(IJCMP), Vol-1,Issue-1, May - June 2017, Pages 55-61 ,

Download | Downloads : 4 | Total View : 1134

Share

Graphene which is one of the latest additions to nanocarbon family has peculiar band structure, extraordinary thermal and electronic conductance and room temperature quantum Hall effect. It is used in for various applications in diverse fields ranging from catalysis to electronics. In addition to being components in electronic devices, GO have been used in nanocomposite materials, polymer composite materials, energy storage, biomedical applications, catalysis and as a surfactant with some overlaps between these fields Graphene oxide is a unique material that can be viewed as a single monomolecular layer of graphite with various oxygen containing functionalities such as epoxide, carbonyl, carboxyl and hydroxyl groups.

Graphene oxide, catalysis, Applications.

[1] Savage, N., Super carbon. Nature, 2012, 483, S30–S31.
[2] Wang, H. et al., Graphene-based materials: fabrication,characterization and application for the decontamination ofwastewater and wastegas and hydrogen storage/generation. Adv.Colloid Interface Sci., 2013, 195–196, 19–40.
[3] Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S.and Geim, A. K. The electronic properties of graphene. Rev.Mod. Phys., 2009, 81, 109–162.
[4] Novoselov, K. S. et al., Electric field effect in atomically thincarbon films. Science, 2004, 306, 666–669.
[5] Nair, R. R. et al., Fine structure constant defines visualtransparency of graphene. Science, 2008, 320, 1308.
[6] Stankovich, S. et al., Graphene-based composite materials.Nature, 2006, 442, 282–286.
[7] Li, X., Wang, X., Zhang, L., Lee, S. and Dai, H., Chemicallyderived, ultrasmooth graphene nanoribbon semiconductors.Science, 2008, 319, 1229–1232.
[8] Mao, S., Yu, K., Chang, J., Steeber, D. A., Ocola, L. E. andChen, J., Direct growth of vertically-oriented graphene for fieldeffecttransistor biosensor. Sci. Rep., 2013, 3, 1696–1702.
[9] Li, W., Tan, C., Lowe, M. A., Abruna, H. D. and Ralph, D. C.,Electrochemistry of individual monolayer graphene sheets. ACSNano, 2011, 5, 2264–2270.
[10] Ramanathan, T. et al., Functionalized graphene sheets forpolymer nanocomposites. Nature Nanotechnol., 2008, 3, 327–331.
[11] Stoller, M. D., Park, S., Zhu, Y., An, J. and Ruoff, R. S.,Graphene-based ultracapacitors. Nano Lett., 2008, 8, 3498–3502.
[12] Pumera, M., Graphene in biosensing. Mater. Today, 2011, 14,308–315.
[13] El-Kady, M. F., Strong, V., Dubin, S. and Kaner, R. B., Laserscribing of high-performance and flexible graphene-basedelectrochemical capacitors. Science, 2012, 335, 1326–1330.
[14] Bianco, A., Graphene: safe or toxic? the two faces of the medal.Angew. Chem., Int. Engl., 2013, 52, 4986–4997.
[15] Kotchey, G. P. et al., The enzymatic oxidation of graphene oxide.ACS Nano, 2011, 5, 2098–2108.
[16] Jr., W. S. H. and Offeman, R. E., Preparation of graphitic oxide.J. Am. Chem. Soc., 1958, 80, 1939.
[17] Avouris, P., Graphene: electronic and photonic properties and devices. Nano Lett., 2010, 10, 4285–4294.
[18] Huang, X., Zeng, Z., Fan, Z., Liu, J. and Zhang, H., Graphenebasedelectrodes. Adv. Mater., 2012, 24, 5979–6004.
[19] Bae, S. et al., Roll-to-roll production of 30-inch graphene filmsfor transparent electrodes. Nature Nanotechnol., 2010, 5, 574–578.
[20] Brodie, B. C., Sur le poids atomique du graphite. Ann. Chim.Phys., 1860, 59, 466.
[21] Schafhaeutl, C., On the combination of carbon with silicon andiron and other metals, forming the different species of cast iron,steel and malleable iron. Philos. Mag., 1840, 16, 570–590.
[22] Novoselov, K. S. et al., Electric field effect in atomically thincarbon films. Science, 2004, 306, 666–669.
[23] Rao, C. N. R., Sood, A. K., Subrahmanyam, K. S. and Govindaraj,A., Graphene: the new two-dimensional nanomaterial.Angew. Chem., Int. Engl., 2009, 48, 7752–7777.
[24] Wei, D. and Liu, Y., Controllable synthesis of graphene and itsapplications. Adv. Mater., 2010, 22, 3225–3241.
[25] Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R. andRuoff, R. S., Graphene and graphene oxide: synthesis, properties,and applications. Adv. Mater., 2010, 22, 3906–3924.
[26] Zhu, Y., James, D. K. and Tour, J. M., New routes to graphene,graphene oxide and their related applications. Adv. Mater., 2012,24, 4924–4955.
[27] Rodríguez-Pérez, L., Herranz, M. Á. and Martín, N., Thechemistry of pristine graphene. Chem. Commun., 2013, 49, 3721–3735.
[28] Allen, M. J., Tung, V. C. and Kaner, R. B., Honeycomb carbon: areview of graphene. Chem. Rev., 2010, 110, 132–145.
[29] Georgakilas, V. et al., Functionalization of graphene: covalentand non-covalent approaches, derivatives and applications.Chem. Rev., 2012, 112, 6156–6214.
[30] Chen, D., Feng, H. and Li, J., Graphene oxide: preparation,functionalization and electrochemical applications. Chem. Rev., 2012, 112, 6027–6053.
[31] Mao, H. Y., Laurent, S., Chen, W., Akhavan, O., Imani, M.,Ashkarran, A. A. and Mahmoudi, M., Graphene: promises, facts,opportunities and challenges in nanomedicine. Chem. Rev., 2013, 113, 3407–3424.
[32] Xu, M., Liang, T., Shi, M. and Chen, H., Graphene-like twodimensionalmaterials. Chem. Rev., 2013, 113, 3766–3798.
[33] Dreyer, D. R., Park, S., Bielawski, C. W. and Ruoff, R. S., Thechemistry of graphene oxide. Chem. Soc. Rev., 2010, 39, 228–240.
[34] Hass, J., de Heer, W. A. and Conrad, E. H., The growth andmorphology of epitaxial multilayer graphene. J. Phys. Condens.Matter, 2008, 20, 323202.
[35] Loh, K. P., Bao, Q., Ang, P. K. and Yang, J., The chemistry ofgraphene. J. Mater. Chem., 2010, 20, 2277.
[36] Sun, Z., James, D. K. and Tour, J. M., Graphene chemistry:synthesis and manipulation. J. Phys. Chem. Lett., 2011, 2, 2425–2432.
[37] Geim, A. K. and Novoselov, K. S., The rise of graphene. NatureMater., 2007, 6, 183–191.
[38] Park, S. and Ruoff, R. S., Chemical methods for the productionof graphenes. Nature Nanotechnol., 2009, 4, 217–224.
[39] Rao, C. N. R. et al., A study of the synthetic methods andproperties of graphenes. Sci. Technol. Adv. Mater., 2010, 11, 054502.
[40] Huang, X. et al., Graphene-based materials: synthesis,characterization, properties and applications. Small, 2011, 7,1876–1902.
[41] Luo, B., Liu, S. and Zhi, L., Chemical approaches towardgraphene-based nanomaterials and their applications in energy related areas. Small, 2012, 8, 630–646.
[42] Jiang, H., Chemical preparation of graphene-based nanomaterialsand their applications in chemical and biological sensors. Small,2011.
[43] Shinde, D. B., Debgupta, J., Kushwaha, A., Aslam, M. and Pillai,V. K., Electrochemical unzipping of multi-walled carbonnanotubes for facile synthesis of high-quality graphenenanoribbons. J. Am. Chem. Soc., 2011, 133, 4168–4171.
[44] Geim, A. K., Graphene: status and prospects. Science, 2009, 324,1530–1534.
[45] Lin, Y.-M., Jenkins, K. A., Valdes-Garcia, A., Small, J. P.,Farmer, D. B. and Avouris, P., Operation of graphene transistorsat gigahertz frequencies. Nano Lett., 2009, 9, 422–426.
[46] Schedin, F., Geim, A. K., Morozov, S. V., Hill, E. W., Blake, P.,Katsnelson, M. I. and Novoselov, K. S., Detection of individualgas molecules adsorbed on graphene. Nature Mater., 2007, 6,652–655.
[47] Stankovich, S. et al., Graphene-based composite materials.Nature, 2006, 442, 282–286.
[48] Stankovich, S. et al., Synthesis of graphene-based nanosheets viachemical reduction of exfoliated graphite oxide. Carbon N. Y.,2007, 45, 1558–1565.
[49] He, Q. et al., Centimeter-long and large-scale micropatterns ofreduced graphene oxide Films: fabrication and sensingapplications. ACS Nano, 2010, 4, 3201–3208.
[50] Sudibya, H. G., He, Q., Zhang, H. and Chen, P., Electricaldetection of metal ions using field-effect transistors based onmicropatterned reduced graphene oxide films. ACS Nano, 2011, 5, 1990–1994.
[51] Stankovich, S., Piner, R. D., Chen, X., Wu, N., Nguyen, S. T. andRuoff, R. S., Stable aqueous dispersions of graphiticnanoplatelets via the reduction of exfoliated graphite oxide in thepresence of poly(sodium 4-styrenesulfonate). J. Mater. Chem.,2006, 16, 155–158.
[52] Mcallister, M. J. et al., Single sheet functionalized graphene byoxidation and thermal expansion of graphite. Chem. Mater.,2007, 19, 4396–4404.
[53] Mattevi, C. et al., Evolution of electrical, chemical and structuralproperties of transparent and conducting chemically derivedgraphene thin films. Adv. Funct. Mater., 2009, 19, 2577–2583.
[54] Li, D., Müller, M. B., Gilje, S., Kaner, R. B. and Wallace, G. G.,Processable aqueous dispersions of graphene nanosheets. Nature Nano technol., 2008, 3, 101–105.
[55] Hirata, M., Gotou, T., Horiuchi, S., Fujiwara, M. and Ohba, M.,Thin-film particles of graphite oxide. 1: high-yield synthesisand flexibility of the particles. Carbon N. Y., 2004, 42, 2929–2937.
[56] Hirata, M., Gotou, T. and Ohba, M., Thin-film particles ofgraphite oxide. 2: preliminary studies for internal microfabrication of single particle and carbonaceous electroniccircuits. Carbon N. Y., 2005, 43, 503–510.
[57] Titelman, G. I., Gelman, V., Bron, S., Khalfin, R. L., Cohen, Y.and Bianco-Peled, H., Characteristics and microstructure ofaqueous colloidal dispersions of graphite oxide. Carbon N. Y.,2005, 43, 641–649.
[58] Liu, P. and Gong, K., Synthesis of polyaniline-intercalatedgraphite oxide by an in situ oxidative polymerization reaction.Carbon N. Y., 1999, 37, 701–711.
[59] Lomeda, J. R., Doyle, C. D., Kosynkin, D. V., Hwang, W.-F. andTour, J. M., Diazonium functionalization of surfactant-wrappedchemically converted graphene sheets. J. Am. Chem. Soc., 2008,130, 16201–16206.
[60] Tung, V. C., Allen, M. J., Yang, Y. and Kaner, R. B., Highthroughput solution processing of large-scale graphene. NatureNanotechnol., 2009, 4, 25–29.
[61] Gómez-Navarro, C., Weitz, R. T., Bittner, A. M., Scolari, M.,Mews, A., Burghard, M. and Kern, K., Electronic transportproperties of individual chemically reduced graphene oxidesheets. Nano Lett., 2007, 7, 3499–3503.
[62] Becerril, H. A., Mao, J., Liu, Z., Stoltenberg, R. M., Bao, Z. andChen, Y., Evaluation of solution-processed reduced grapheneoxide films as transparent conductors. ACS Nano, 2008, 2, 463–470.
[63] Mauro, M., Cipolletti, V., Galimberti, M., Longo, P. and Guerra,G., Chemically reduced graphite oxide with improved shapeanisotropy. J. Phys. Chem. C, 2012, 116, 24809–24813.
[64] Yang, J., Yan, X., Chen, F., Fan, P. and Zhong, M., Graphiteoxide platelets functionalized by poly(ionic liquid) brushes andtheir chemical reduction. J. Nanopart. Res., 2012, 15, 1383–1895.
[65] Li, Y., Zhao, N., Shi, C., Liu, E. and He, C., Improve thesupercapacity performance of MnO2-decorated graphene bycontrolling the oxidization extent of graphene. J. Phys. Chem. C,2012, 116, 25226–25232.
[66] Cassagneau, T. and Fendler, J. H., Preparation and layer-by-layerself-assembly of silver nanoparticles capped by graphite oxidenanosheets. J. Phys. Chem. B, 1999, 103, 1789–1793.
[67] Gao, W., Alemany, L. B., Ci, L. and Ajayan, P. M., New insightsinto the structure and reduction of graphite oxide. Nature Chem.,2009, 1, 403–408.
[68] Shin, H.-J. et al., Efficient reduction of graphite oxide by sodiumborohydride and its effect on electrical conductance. Adv. Funct.Mater., 2009, 19, 1987–1992.
[69] Muszynski, R., Seger, B. and Kamat, P. V., Decorating graphenesheets with gold nanoparticles. J. Phys. Chem. C, 2008, 112,5263–5266.
[70] He, Y. and Cui, H., Synthesis of dendritic platinum nanoparticles/lucigenin/reduced graphene oxide hybrid with chemiluminescenceactivity. Chem. Eur. J., 2012, 18, 4823–4826.
[71] Chua, C. K. and Pumera, M., Reduction of graphene oxide withsubstituted borohydrides. J. Mater. Chem. A, 2013, 1, 1892–1898.
[72] Wang, G., Yang, J., Park, J., Gou, X., Wang, B., Liu, H. and Yao,J., Facile synthesis and characterization of graphene nanosheets.J. Phys. Chem. C, 2008, 112, 8192–8195.
[73] Bao, Q., Zhang, D. and Qi, P., Synthesis and characterization ofsilver nanoparticle and graphene oxide nanosheet composites as abactericidal agent for water disinfection. J. Colloid Interface Sci.,2011, 360, 463–470.
[74] Gurunathan, S., Han, J. W., Dayem, A. A., Eppakayala, V. andKim, J.-H., Oxidative stress-mediated antibacterial activity ofgraphene oxide and reduced graphene oxide in Pseudomonasaeruginosa. Int. J. Nanomedicine, 2012, 7, 5901–5914.
[75] Gurunathan, S., Han, J. W., Eppakayala, V. and Kim, J.-H.,Green synthesis of graphene and its cytotoxic effects in humanbreast cancer cells. Int. J. Nanomed., 2013, 8, 1015–1027.
[76] Gurunathan, S., Han, J. W. and Kim, J.-H., Green chemistry approach for the synthesis of biocompatible graphene. Int. J.Nanomed., 2013, 8, 2719–2732.
[77] Fan, X., Peng, W., Li, Y., Li, X., Wang, S., Zhang, G. and Zhang,F., Deoxygenation of exfoliated graphite oxide under alkalineconditions: a green route to graphene preparation. Adv. Mater.,2008, 20, 4490–4493.
[78] Guo, H., Wang, X., Qian, Q., Wang, F. and Xia, X., A greenapproach to the synthesis of graphene nanosheets. ACS Nano,2009, 3, 2653–2659.
[79] Liu, S., Wang, J., Zeng, J., Ou, J., Li, Z., Liu, X. and Yang, S.,‘Green’ electrochemical synthesis of Pt/graphene sheetnanocomposite film and its electrocatalytic property. J. PowerSources, 2010, 195, 4628–4633.
[80] Zhu, C., Guo, S., Fang, Y. and Dong, S., Reducing sugar: newfunctional molecules for the green synthesis of graphenenanosheets. ACS Nano, 2010, 4, 2429–2437.
[81] He, H. and Gao, C., Supraparamagnetic, conductive andprocessable multifunctional graphene nanosheets coated withhigh-density Fe3O4 nanoparticles. ACS Appl. Mater. Interfaces, 2010, 2, 3201–3210.
[82] Liu, X.-W., Yao, Z.-J., Wang, Y.-F. and Wei, X.-W., Grapheneoxide sheet-Prussian blue nanocomposites: green synthesis andtheir extraordinary electrochemical properties. Colloids Surf. B,2010, 81, 508–512.
[83] Fan, Z.-J. et al., Facile synthesis of graphene nanosheets via Fereduction of exfoliated graphite oxide. ACS Nano, 2011, 5, 191–198.
[84] Dey, R. S., Hajra, S., Sahu, R. K., Raj, R. C. and Panigrahi, M.K., A rapid room temperature chemical route for the synthesis ofgraphene: metal-mediated reduction of graphene oxide. Chem. Commun., 2012, 48, 1787–1789.
[85] Wang, Y., Shi, Z. and Yin, J., Facile synthesis of solublegraphene via a green reduction of graphene oxide in tea solutionand its biocomposites. ACS Appl. Mater. Interfaces, 2011, 3,1127–1133.
[86] Zhang, J., Yang, H., Shen, G., Cheng, P., Zhang, J. and Guo, S.,Reduction of graphene oxide via l-ascorbic acid. Chem.Commun., 2010, 46, 1112–1114.
[87] Mhamane, D. et al., From graphite oxide to highly waterdispersible functionalized graphene by single step plant extractinduceddeoxygenation. Green Chem., 2011, 13, 1990–1996.
[88] Thakur, S. and Karak, N., Green reduction of graphene oxide by aqueous phytoextracts. Carbon N. Y., 2012, 50, 5331–5339.
[89] Budi Nursanto, E., Nugroho, A., Hong, S.-A., Kim, S. J., YoonChung, K. and Kim, J., Facile synthesis of reduced grapheneoxide in supercritical alcohols and its lithium storage capacity. Green Chem., 2011, 13, 2714–2718.
[90] Liu, K., Zhang, J.-J., Cheng, F.-F., Zheng, T.-T., Wang, C. andZhu, J.-J., Green and facile synthesis of highly biocompatiblegraphene nanosheets and its application for cellular imaging anddrug delivery. J. Mater. Chem., 2011, 21, 12034–12040.
[91] Singh, V. V. et al., Greener electrochemical synthesis of highquality graphene nanosheets directly from pencil and its SPRsensing application. Adv. Funct. Mater., 2012, 22, 2352–2362.
[92] Liu, J., Fu, S., Yuan, B., Li, Y. and Deng, Z., Toward a universal‘adhesive nanosheet’ for the assembly of multiple nanoparticlesbased on a protein-induced reduction/decoration of grapheme oxide. J. Am. Chem. Soc., 2010, 132, 7279–7281.
[93] Liu, Y., Li, Y., Zhong, M., Yang, Y. and Wang, M., A green andultrafast approach to the synthesis of scalable graphenenanosheets with Zn powder for electrochemical energy storage. J. Mater. Chem., 2011, 21, 15449–15455.
[94] Zhang, Y. et al., One-pot green synthesis of Ag nano particles graphenenano composites and their applications in SERS, H2O2,and glucose sensing. RSC Adv., 2012, 2, 538–545.
[95] Zhang, Y. et al., Biomolecule-assisted, environmentally friendly,one-pot synthesis of CuS/reduced graphene oxide nanocompositeswith enhanced photocatalytic performance. Langmuir, 2012,28, 12893–12900.
[96] Shah, M. S. A. S., Park, A. R., Zhang, K., Park, J. H. and Yoo, P.J., Green synthesis of biphasic TiO2-reduced graphene oxidenanocomposites with highly enhanced photocatalytic activity.ACS Appl. Mater. Interfaces, 2012, 4, 3893–3901.
[97] Gupta, S. S., Sreeprasad, T. S., Maliyekkal, S. M., Das, S. K. andPradeep, T., Graphene from sugar and its application in waterpurification. ACS Appl. Mater. Interfaces, 2012, 4, 4156–4163.
[98] Chen, X., Su, B., Wu, G., Yang, C. J., Zhuang, Z., Wang, X. andChen, X., Platinum nanoflowers supported on graphene oxidenanosheets: their green synthesis, growth mechanism andadvanced electrocatalytic properties for methanol oxidation.J. Mater. Chem., 2012, 22, 11284–11289.
[99] Sui, Z., Meng, Q., Zhang, X., Mab, R. and Cao, B., Greensynthesis of carbon nanotube – graphene hybrid aerogels andtheir use as versatile agents for water purification. J. Mater. Chem., 2012, 22, 8767–8771.
[100] Zhang, Y., Wang, X., Zeng, L., Song, S. and Liu, D., Green andcontrolled synthesis of Cu2O–graphene hierarchical nanohybridsas high-performance anode materials for lithium-ion batteries viaan ultrasound assisted approach. Dalton Trans., 2012, 41, 4316–4319.