[1] Aamer, A., Eka Yani, L., & Alan Priyatna, I. (2020). Data analytics in the supply chain management: Review of machine learning applications in demand forecasting. Operations and Supply Chain Management: An International Journal, 14(1), 1-13.
[2] Baraldi, E. C., & Kaminski, P. C. (2018). Reference model for the implementation of new assembly processes in the automotive sector. Cogent Engineering, 5(1), 1482984.
[3] Boute, R. N., & Udenio, M. (2022). AI in logistics and supply chain management. In Global Logistics and Supply Chain Strategies for the 2020s: Vital Skills for the Next Generation (pp. 49-65). Cham: Springer International Publishing.
[4] Chan, C. Y. T., & Petrikat, D. (2023). Strategic applications of artificial intelligence in healthcare and medicine. Journal of Medical and Health Studies, 4(3), 58-68.
[5] Dutta, D., & Upreti, S. R. (2021). Artificial intelligenceâ€based process control in chemical, biochemical, and biomedical engineering. The Canadian Journal of Chemical Engineering, 99(11), 2467-2504.
[6] Evers, A. W., Rovers, M. M., Kremer, J. A., Veltman, J. A., Schalken, J. A., Bloem, B. R., & Van Gool, A. J. (2012). An integrated framework of personalized medicine: from individual genomes to participatory health care. Croatian medical journal, 53(4), 301-303.
[7] Fisher, A. C., Kamga, M. H., Agarabi, C., Brorson, K., Lee, S. L., & Yoon, S. (2019). The current scientific and regulatory landscape in advancing integrated continuous biopharmaceutical manufacturing. Trends in biotechnology, 37(3), 253-267.
[8] Gargalo, C. L., Udugama, I., Pontius, K., Lopez, P. C., Nielsen, R. F., Hasanzadeh, A., ... & Gernaey, K. V. (2020). Towards smart biomanufacturing: a perspective on recent developments in industrial measurement and monitoring technologies for bio-based production processes. Journal of Industrial Microbiology & Biotechnology: Official Journal of the Society for Industrial Microbiology and Biotechnology, 47(11), 947-964.
[9] Himmel, A., Matschek, J., Kok, R., Morabito, B., Nguyen, H. H., & Findeisen, R. (2023). Machine learning for process control of (bio) chemical processes. arXiv preprint arXiv:2301.06073.
[10] Kashem, M. A., Shamsuddoha, M., Nasir, T., & Chowdhury, A. A. (2023). Supply chain disruption versus optimization: a review on artificial intelligence and blockchain. Knowledge, 3(1), 80-96.
[11] Kelley, B. (2009, September). Industrialization of mAb production technology: the bioprocessing industry at a crossroads. In MAbs (Vol. 1, No. 5, pp. 443-452). Taylor & Francis.
[12] Kim, E., Lee, I., Kim, H., & Shin, K. (2021). Factors affecting outbound open innovation performance in bio-pharmaceutical industry-focus on out-licensing deals. Sustainability, 13(8), 4122.
[13] Krupitzer, C., Wagenhals, T., Züfle, M., Lesch, V., Schäfer, D., Mozaffarin, A., ... & Kounev, S. (2020). A survey on predictive maintenance for industry 4.0. arXiv preprint arXiv:2002.08224.
[14] Kumar, A., Udugama, I. A., Gargalo, C. L., & Gernaey, K. V. (2020). Why is batch processing still dominating the biologics landscape? Towards an integrated continuous bioprocessing alternative. Processes, 8(12), 1641.
[15] Li, B. H., Hou, B. C., Yu, W. T., Lu, X. B., & Yang, C. W. (2017). Applications of artificial intelligence in intelligent manufacturing: a review. Frontiers of Information Technology & Electronic Engineering, 18(1), 86-96.
[16] Mavani, N. R., Ali, J. M., Othman, S., Hussain, M. A., Hashim, H., & Rahman, N. A. (2022). Application of artificial intelligence in food industry—a guideline. Food Engineering Reviews, 14(1), 134-175.
[17] McHughen, A., & Smyth, S. (2008). US regulatory system for genetically modified genetically modified organism (GMO), rDNA or transgenic crop cultivars. Plant biotechnology journal, 6(1), 2-12.
[18] Narayanan, H., Luna, M. F., von Stosch, M., Cruz Bournazou, M. N., Polotti, G., Morbidelli, M., ... & Sokolov, M. (2020). Bioprocessing in the digital age: the role of process models. Biotechnology journal, 15(1), 1900172.
[19] Nwagwu, U., Niaz, M., Chukwu, M. U., & Saddique, F. (2023). The influence of artificial intelligence to enhancing supply chain performance under the mediating significance of supply chain collaboration in manufacturing and logistics organizations in Pakistan. Traditional Journal of Multidisciplinary Sciences, 1(02), 29-40.
[20] Rathore, A. S., Kateja, N., & Agarwal, H. (2017). Continuous downstream processing for production of biotech therapeutics. Continuous Biomanufacturing: Innovative Technologies and Methods, 259-288.
[21] Rosenberger, S. (2022). Growth of Artificial Intelligence in Pharma Manufacturing: Lonza describes how artificial intelligence, machine learning, and big data are improving safety, quality, and sustainability—all while lowering costs. Genetic Engineering & Biotechnology News, 43(1), 34-36.
[22] Saddique, F., Mushtaq, N., Nwagwu, U., & Naeem, A. R. (2024). Influence of Artificial Intelligence Technologies on the Organization Performance with Moderator Role of Technological Leadership Support on Construction Organization of Pakistan. Traditional Journal of Law and Social Sciences, 3(01), 47-62.
[23] Saddique, F., Nwagwu, U., Mushtaq, N., Lamiaa, B., & Ali, A. (2023). Implementation of digitalization supply chain helps in gaining of competitive advantages as mediating role in the supply chain performance in construction organization in Pakistan. Traditional Journal of Humanities, Management, and Linguistics, 2(01), 14-27.
[24] Saddique, F., Patel, K. R., Niaz, M., Chukwu, M. U., & Nwagwu, U. (2023). Impact of Supply Chain Transformation on Supply Chain Performance: The Empirical Study that bases on Mediating Role of Supply Chain Resilience on Construction Organization on Pakistan. Asian Journal of Engineering, Social and Health, 2(9), 1072-1086.
[25] Saddique, F., Ramzan, B., Sanyal, S., & Alamari, J. (2023). Role of digital leadership towards sustainable business performance: A parallel mediation model. Journal of Infrastructure, Policy and Development, 7(3).
[26] Sharif, S., Lodhi, R. N., Iqbal, K., & Saddique, F. (2022). Gender disparity in leadership boosts affective commitment and tacit knowledge sharing about libraries. International Journal of Organizational Analysis, 30(5), 1212-1234.
[27] Shimasaki, C. (2014). Understanding biotechnology product sectors. In Biotechnology entrepreneurship (pp. 113-138). Academic Press.
[28] Taska, B., Samila, S., Azar, J., Gine, M., & Alekseeva, L. (2020). The demand for AI skills in the labour market. VoxEU. org, 3.
[29] Uchechukwu Cornelius Onwuachumb, Anirudh Mehta, Moazam Niaz, Ifeanyi Moses Uzowuru, & Urenna Nwagwu. (2024). Implementation of the Latest Artificial Intelligence Technology Chatbot on Sustainable Supply Chain Performance on Project-Based Manufacturing Organization: A Parallel Mediation Model in the American Context. The International Journal of Science, Mathematics and Technology Learning, 31(1).
[30] Vora, L. K., Gholap, A. D., Jetha, K., Thakur, R. R. S., Solanki, H. K., & Chavda, V. P. (2023). Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics, 15(7), 1916.
[31] Wanerman, R. E., Javitt, G. H., & Shah, A. B. (2020). Artificial intelligence in biotechnology: A framework for commercialization. In Biotechnology Entrepreneurship (pp. 419-427). Academic Press.
[32] Wang, H. Y., & Diao, L. J. (2013). On Characteristics and Development Trend of Advanced Manufacturing Technology. Advanced Materials Research, 712, 3195-3198.
[33] Wani, S. U. D., Khan, N. A., Thakur, G., Gautam, S. P., Ali, M., Alam, P., ... & Shakeel, F. (2022, March). Utilization of artificial intelligence in disease prevention: Diagnosis, treatment, and implications for the healthcare workforce. In Healthcare (Vol. 10, No. 4, p. 608). MDPI.