• editor.aipublications@gmail.com
  • Track Your Paper
  • Contact Us
  • ISSN: 2456-8678

International Journal Of Rural Development, Environment And Health Research(IJREH)

Evaluation of Cadmium tolerant Fungi in the dying Staff and their removal Potential

Tesfalem Belay Woldeamanuale


International Journal of Rural Development, Environment and Health Research(IJREH), Vol-1,Issue-2, July - August 2017, Pages 1-9,

Download | Downloads : 6 | Total View : 1776

Share

Cadmium tolerance and bioremediation capacity of seven isolates including Aspergilus versicolor, Aspergillus fumigatus, Paecilomyces sp.9, Paecilomyces sp.G, Terichoderma sp, Microsporum sp,Cladosporium sp were determined. Minimum inhibitory concentration values among 2,000-6,000 mg lˉ1proved great ability of isolated strains to survive in cadmium polluted environments. The most tolerant fungi, Aspergilus versicolor, showed tolerance index of 0.93 in 100 mg lˉ1 cadmium agar media. Fungal resistance against cadmium is depended directly on strain’s biological function. A. versicolor was found to bioaccumulation over 7.67mg of cadmium per 1 g of mycelium, followed by 6.546, 6.354, and 6.286, 6.134 by Paecilomyces sp, Aspergilus fumigatus, Microsporum sp and Terichoderma sp, respectively. It can be noted that tolerance of the strains appears to be independent from bioaccumulation capacity. Finally, the results indicated that A. versicolor could be a prospective candidate for bioremediation processes.

Cadmium tolerance, Bioremediation, Fungi.

[1] DasN,Vimala R, KarthikaP. Biosorption of heavy metals An overview. IndianJBiotechnol. 2008; 7:159–69.
[2] GrązM,Pawlikowska PawlęgaB, Jarosz Wilkołazka A. Grow thin hibition and intra cellular distribution of Pb ions by the whiterot fungus Abort iporusbiennis. IntBiodeterBiodegr. 2011;65:1249.doi:10.1016/j.ibiod.2010.08.010.
[3] Salinas E, Elorza de Orellano M, Rezza I, Martinez L, Marchesvky E, Sanz de Tosetti M. Removal of cadmium and lead from dilute aqueous solutions by Rhodotorularubra. Bioresource Technol. 2000;72:107–12. doi: 10.1016/S0960-8524(99)00111-X.
[4] Blaudez D, Botton B, Chalot M. CadmiumuptakeandsubcellularcompartmentatiointheectomycorrhizalfungusPaxillusinvolutus. Microbiology. 2000;146:1109–17.
[5] Carrillo-Gonzalez R, Gonzalez-Chavez Mdel C. Tolerance to and accumulation of cadmium by the mycelium of the fungi Scleroderma citrinum and Pisolithustinctorius. Biol Trace Elem Res. 2012;146:388–95. doi: 10.1007/s12011-011-9267-7.
[6] Jaeckel P, Krauss GJ, Krauss G. Cadmium and zinc response of the fungi Heliscuslugdunensis and Verticillium cf. alboatrum isolated from highly polluted water. Sci Total Environ. 2005;346:274–9. doi: 10.1016/j.scitotenv.2004.12.082.
[7] Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review. J Environ Manage. 2011;92:40718.doi:10.1016/j.jenvman.2010.11.011.
[8] Ahluwalia SS, Goyal D. Microbial and plant derived biomass for removal of heavy metalsfromwastewater.BioresourceTechnol. 2007;98:224357.doi:10.1016/j.biortech.2005.12.006.
[9] Melgar MJ, Alonso J, Garcia MA. Removal of toxic metals from aqueous solutions by fungal biomass of Agaricusm acrosporus. Sci Total Environ. 2007; 385:12–9.doi: 10.1016/j.scitotenv.2007.07.011.
[10] Gadd G. Metal Tolerance. Milton Keynes: Open University Press; 1990. pp. 178–210.
[11] Anahid S, Yaghmaei S, Ghobadinejad Z. Heavy metal tolerance of fungi. Scientia Iranica. 2011;18:5028.doi:1016/j.scient.2011.05.015.
[12] Yuan H, Li Z, Ying J, Wang E. Cadmium (II) removal by a hyperaccumulator fungus Phoma sp. F2 isolated from blende soil. CurrMicrobiol. 2007;55:223–7. doi: 10.1007/s00284-007-0088-z.
[13] Kacprzak M, Malina G. The tolerance and Zn2+, Ba2+ and Fe3+ accumulation by Trichoderma atroviride and Mortierellaexigua isolated from contaminated soil. Can J Soil Sci. 2005;85:283–90. doi: 10.4141/S04-018.
[14] Xiao X, Luo S, Zeng G, Wei W, Wan Y, Chen L, et al. Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L. Bioresour Technol.2010;101:1668–74. doi: 10.1016/j.biortech.2009.09.083.
[15] Lopez Errasquın E, Vazquez C. Tolerance and uptake of heavy metals by Trichoderma atrovirideisolated from sludge. Chemosphere. 2003;50: 137–43. doi: 10.1016/S0045-6535(02)00485-X.
[16] Le L, Tang J, Ryan D, Valix M. Bioleaching nickel laterite ores using multi-metal tolerant Aspergillus foetidus organism. Miner Eng. 2006;19:1259–65. doi: 10.1016/j.mineng.2006.02.006.
[17] Xu X, Xia L, Huang Q, Gu J-D, Chen W. Biosorption of cadmium by a metal-resistant filamentous fungus isolated from chicken manure compost. Environ Technol. 2012;33: 1661–70. doi: 10.1080/09593330.2011.641591.
[18] Gillespie SH, Pearson RD. Principles and Practice of Clinical Parasitology. West Sussex: Wiley Online Library; 2001.
[19] Mirzaei S, Yazdi MT, Sepehrizadeh Z. Secretory expression and purification of a soluble NADH cytochrome b5 reductase enzyme from Mucorracemosus in Pichia pastoris based on codon usage adaptation. Biotechnol Lett.2010;32:1705–11. doi: 10.1007/s10529-010-0348-z.
[20] Borneman J, Hartin RJ. PCR primers that amplify fungal rRNA genes from environmental samples. Appl Environ Microb. 2000; 66: 4356–60. doi: 10.1128/AEM.66.10.4356-4360.2000
[21] Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol.1990; 215: 403–10. doi: 10.1016/S0022-2836(05)80360-2.

[22] Zapotoczny S, Jurkiewicz A, Tylko G, Anielska T, Turnau K. Accumulation of copper by Acremoniumpinkertoniae a fungus isolated from industrial wastes. Microbiol Res. 2007;162:219–28. doi: 10.1016/j.micres.2006.03.008.
[23] Gruhn C, Miller O., Jr Effect of copper on tyrosinase activity and polyamine content of some ectomycorrhizal fungi. Mycol Res. 1991;95:268–72. doi: 10.1016/S0953-7562(09)81231-8.
[24] Anand P, Isar J, Saran S, Saxena RK. Bioaccumulation of copper by Trichoderma viride. Bioresource Technol. 2006;97:1018–25. doi: 10.1016/j.biortech.2005.04.046.
[25] Pan R, Cao L, Zhang R. Combined effects of Cu, Cd, Pb, and Zn on the growth and uptake of consortium of Cu-resistant Penicillium sp. A1 and Cd-resistant Fusarium sp. A19. J Hazard Mater. 2009;171:761–6. doi: 10.1016/j.jhazmat.2009.06.080.
[26] Kabata-Pendias A. Trace Elements In Soils and Plants. Boka Raton: CRC press; 2010.
[27] EPA. Development Document for Effluent Limitations Guidelines and Standards for the Metal Finishing Point Source Category. November 2002 [updated November 2002; cited]; Available from
[28] Yazdani M, Yap CK, Abdullah F, Tan SG. An in vitro study on the adsorption, absorption and uptake capacity of Zn by the bioremediator Trichoderma atroviride. Environment Asia. 2010;3:53–9.
[29] Iram S, Ahmad I, Javed B, Yaqoob S, Akhtar K, Kazmi MR, et al. Fungal tolerance to heavy metals. Pak J Bot. 2009;41:2583–94.
[30] Colpaert JV, Vandenkoornhuyse P, Adriaensen K, Vangronsveld J. Genetic variation and heavy metal tolerance in the ectomycorrhizal basidiomycete Suillusluteus. New Phytologist. 2000;147:367–79. doi: 10.1046/j.1469-8137.2000.00694.
[31] Zafar S, Aqil F, Ahmad I. Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour Technol. 2007;98: 2557–61. doi: 10.1016/j.biortech.2006.09.051.
[32] Rudawska M, Leski T. Aluminium tolerance of different Paxillus involutus Fr strains originating from polluted and nonpolluted sites. Acta Societatis Botanicorum Poloniae. 1998; 67:115–22. doi: 10.5586/asbp.1998.015.
[33] Mohamed RM, Abo-Amer AE. Isolation and characterization of heavy-metal resistant microbes from roadside soil and phylloplane. J Basic Microbiol. 2012; 52: 53–65. doi: 10.1002/jobm.201100133.
[34] Ezzouhri L, Castro E, Moya M, Espinola F, Lairini K. Heavy metal tolerance of filamentous fungi isolated from polluted sites in Tangier, Morocco. Afr J Microbiol Res. 2009;3:35–48.
[35] Ge W, Zamri D, Mineyama H, Valix M. Bioaccumulation of heavy metals on adapted Aspergillus foetidus.Adsorption. 2011;17:901–10. doi: 10.1007/s10450-011-9359-x.
[36] Krznaric E, Verbruggen N, Wevers JH, Carleer R, Vangronsveld J, Colpaert JV. Cd-tolerant Suillusluteus: a fungal insurance for pines exposed to Cd. Environ Pollut. 2009;157:1581–8. doi: 10.1016/j.envpol.2008.12.030.
[37] Baldrian P, Gabriel J. Intraspecific variability in growth response to cadmium of the wood-rotting fungus Piptoporusbetulinus. Mycologia. 2002;94:428–36. doi: 10.2307/3761777.
[38] Akhtar S, Mahmood-ul-Hassan M, Ahmad R, Suthor V, Yasin M. Metal tolerance potential of filamentous fungi isolated from soils irrigated with untreated municipal effluent. Soil Environ. 2013;32:55–62.
[39] [39]. Muñoz AJ, Ruiz E, Abriouel H, Gálvez A, Ezzouhri L, Lairini K, et al. Heavy metal tolerance of microorganisms isolated from wastewaters: Identification and evaluation of its potential for biosorption. ChemEng J. 2012;210:325–32. doi: 10.1016/j.cej.2012.09.007.
[40] Darlington AB, Rauser WE. Cadmium alters the growth of the ectomycorrhizal fungus Paxillus involutes: a new growth model accounts for changes in branching. Can J Bot. 1988;66:225–9. doi: 10.1139/b88-038.
[41] Jarosz-Wilkołazka A, Grąz M, Braha B, Menge S, Schlosser D, Krauss G-J. Species-specific Cd-stress response in the white rot basidiomycetes Abortiporusbiennis and Cerrena unicolor. Biometals. 2006; 19: 39–49. doi: 10.1007/s10534-005-4599-4.
[42] Gadd GM. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res. 2007;111:3–49. doi: 10.1016/j.mycres.2006.12.001.
[43] Volesky B, Holan Z. Biosorption of heavy metals. BiotechnolProg. 1995;11:235–50. doi: 10.1021/bp00033a001.

[44] Cánovas D, Durán C, Rodríguez N, Amils R, De Lorenzo V. Testing the limits of biological tolerance to arsenic in a fungus isolated from the River Tinto. Environ Microbiol. 2003;5:133–8. doi: 10.1046/j.1462-2920.2003.00386.x.
[45] Vijver MG, van Gestel CA, Lanno RP, van Straalen NM, Peijnenburg WJ. Internal metal sequestration and its ecotoxicological relevance: a review. Environ Sci Technol. 2004;38:4705–12. doi: 10.1021/es040354g.
[46] Alonso J, García M, Pérez-López M, Melgar M. The concentrations and bioconcentration factors of copper and zincinedible mushrooms. Arch Environ Con Tox. 2003;44:0180–8.doi: 10.1007/s00244-002-2051-0.
[47] Mejáre M, Bülow L. Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol. 2001;19:67–73. doi: 10.1016/S0167-7799(00)01534-1.
[48] Joshi PK, Swarup A, Maheshwari S, Kumar R, Singh N. Bioremediation of heavy metals in liquid media through fungi isolated from contaminated sources. Indian J Microbiol. 2011;51 :482–7. doi: 10.1007/s12088-011-0110-9.