• editor.aipublications@gmail.com
  • Track Your Paper
  • Contact Us
  • ISSN: 2456-8635 (NAAS Rating: 3.43)

International Journal Of Horticulture, Agriculture And Food Science(IJHAF)

Valorization of Cheese whey To “Bio”-value added food Products with Industrial Interest and their Potential Beneficial Health Effects

Charalampia Dimou , Koutelidakis E. Antonios , Chrysavgi Gardeli , Anastasia Papadaki , Haralabos C. Karantonis


International Journal of Horticulture, Agriculture and Food science(IJHAF), Vol-3,Issue-2, March - April 2019, Pages 64-74, 10.22161/ijhaf.3.2.5

Download | Downloads : 9 | Total View : 1688

Share

Cheese whey is a by-product liquid stream that is produced during cheese or casein production process after casein coagulation by enzymes and/or acids. Milk production and processing is increasing continuously, with cheese making being the most abundant dairy product. Thinking that surplus CW’s biochemical oxygen demand (BOD5) varies from 35.000 to 55.000 mg O2/L and the total worldwide production is estimated at about 180 to 190 million tons/year, its disposal in the environment, could arise several environmental issues. So, valorization of cheese whey to functional value-added products of high industrial interest and nutritional value (such as proteins, oligosaccharides and carotenoids employing either chemical or bio-catalyzed processes), could possibly constitute a novel waste management option while promoting circular economy principles.

cheese whey, bio-based ingredients, functional food, health benefits, value-added products, by-products, bioprocesses.

[1] Acosta, P.B.; Matalon, K.M. Nutrition management of patients with inherited disorders of aromatic amino acid metabolism. In: Acosta PB, editor. Nutrition Management of Patients with Inherited Metabolic Disorders, Boston, Jones and Bartlett Publishers, 2010; pp 119-174.
[2] Aguirre-Ezkauriatza, E.; Aguilar-Yáñez, J.; Ramírez-Medrano, A.; Alvarez, M. Production of probiotic biomass Lactobacillus casei in goat milk whey: comparison of batch, continuous and fed-batch cultures. Bioresour Technol, 2010, 101, 2837-2844. https://doi.org/10.1016/j.biortech.2009.10.047
[3] Agyei, D.; Ongkudon, C.M.; Wei, C.Y; Chan, A.S.; Danquah, M.K. Bioprocess challenges to the isolation and purification of bioactive peptides. Food Bioprod Processing 2016, 98, 244-256. https://doi.org/10.1016/j.fbp.2016.02.003
[4] Atra, R.; Vatai, G.; Bekassy-Molnar E, Balint A. Investigation of ultra and nanofiltration for utilization of whey protein and lactose. J Food Eng 2004, 67, 3, 325-332.
https://doi.org/10.1016/j.jfoodeng.2004.04.035
[5] Baldasso, C.; Barros, T.C.; Tessaro I.C. Concentration and purification of whey proteins by ultrafiltration. Desalination 2011, 278, 1-3, 381-386. https://doi.org/10.1016/j.desal.2011.05.055
[6] Barile, D.; Tao, N.; Lebrilla, C.B.; Coisson J.D, Arlorio, M.; Germana J. B. Permeate from cheese whey ultrafiltration is a source of milk oligosaccharides. Int Dairy J 2009, 19, 9, 524-530. https://doi.org/10.1016/j.idairyj.2009.03.008
[7] Barilea, D.; Tao, N.; Carlito, Lebrilla B.; Jean-Daniel Coisson.; Arlorio M., Bruce German, G. Permeate from cheese whey ultrafication is a source of milk oligosaccharides. Int Dairy J 2009, 524-530. https://doi.org/10.1016/j.idairyj.2009.03.008
[8] Bordenave-Juchereau, S.; Almeida, B.; Piot, J.M.; Sannier F. Effect of protein concentration, pH, lactose content and pasteurization on thermal gelation of acid caprine whey protein concentrates. J. Dairy Res 2005, 72, 34-38.
[9] Brück, WM.; Gibson, GR.; Brück, TB. The effect of proteolysis on the induction of cell death by monomeric alpha-lactalbumin. Biochem 2014, 97, 138-143.
https://doi.org/10.1016/j.biochi.2013.10.007
[10] Blaskó, B. World importance and present tendencies of dairy sector. Applied Studies in Agribusiness and Commerce – APSTRACT. Budapest, Hungary: Agroinform Publishing House, 2012, 119-23.
[11] Carvalho, F., Prazeres, A.R., Rivas J. Cheese whey wastewater: characterization and treatment. Sci. Total Environ 2013, 445, 385-396. https://doi.org/10.1016/j.scitotenv.2012.12.038
[12] De Vuyst, L.; De Vin, F.; Vaningelgem, F.; Degeest, B. Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. International Dairy J 2001, 11, 687-707.
https://doi.org/10.1016/S0958-6946(01)00114-5
[13] Dimou, C.; Koutelidakis, Ε.A.; Nasopoulou, C.; Karantonis, H. Current trends and emerging technologies in biopigment production processes: Industrial food and health applications. Inte J Horticult, Agricult and Food Science 2017b, 1, 2, 33-46.
[14] Dimou, C.; Koutelidakis, E.A. Value added alternatives of winemaking process residues: A health based oriented perspective. BAOJ Biotechnol 2016a, 2, 3, 016.
https://bioaccent.org/biotechnology/biotechnology16.pdf
[15] Dimou, C.; Koutelidakis, Ε.Α. Grape pomace: A challenging renewable resource of bioactive phenolic compounds with diversified health benefits. MOJ Food Processing and Techn 2016b, 3, 1, 262-265.
https://medcraveonline.com/MOJFPT/MOJFPT-03-00065
[16] Dimou, C.; Vlysidis, A.; Kopsahelis, N.; Papanikolaou, S.; Koutinas, A.A, Kookos, I.K. 2016. Techno-economic analysis of wine lees valorisation for the production of high value-added products. Biochem Eng J 2016c, 116, 157-165.
[17] Dimou, C.; Koutelidakis, E.A. 2017. From pomegranate processing by-products to innovative value-added functional ingredients and biobased products with several applications in food sector. BAOJ Biotechnol. 3:025.
[18] Gregor, Mc.; Poppitt, S.D. Milk protein for improved metabolic health: a review of the evidence. Nutr Metab (Lond) 2013, 10, 46. https://doi.org/10.1186/1743-7075-10-46
[19] Ghaly, A..; Mahmoud, N. S.; Rushton, D. G.; Arab, F. Potential Environmental and health impacts of high land application of cheese whey. American J Agricult Biologic Science 2007, 2, 106-117. https://doi.org/10.3844/ajabssp.2007.106.117
[20] Gupta, C.; Prakash, D.; Garg, A.P; Gupta, S. Whey proteins: A novel source of bioceuticals. Middle-East J Sci Res 2012, 12, 3, 365-375.
[21] Gregor, Mc.; Poppitt, S.D. Milk protein for improved metabolic health: a review of the evidence. Nutr Metab (Lond) 2013, 10, 46. https://doi.org/10.1186/1743-7075-10-46
[22] Hamme, V.; Sannier, F.; Piot, J.M.; Didelot, S.; Bordenave-Juchereau. S. Crude goat whey fermentation by Kluyveromyces marxianus and Lactobacillus rhamnosus: contribution to proteolysis and ACE inhibitory activity. J. Dairy Res 2009, 76 152-157. https://doi.org/10.1017/S0022029908003877
[23] Hernández-Ledesma, B.; Ramos, M.; Gómez-Ruiz, J.Á. Bioactive components of ovine and caprine cheese whey. Small Rumin Res 2011, 101, 196-204. https://doi.org/10.1016/j.smallrumres.2011.09.040
[24] Ho, C.S.J.; Rydström, A.; Trulsson, M.; Bålfors, J.; Storm, P. HAMLET: functional properties and therapeutic potential. Future Oncol 2012, 8, 1301-1313.
[25] Jelen, P. Whey processing. In: Encylcopedia of dairy sciences. Roginski, H.; Fuquay, J. W.; P. F. Fox. ed; Academic Press. London, 2003, pp 2739-2751. ISBN: 0122272358
[26] Kargi, F.; Ozmihci S. Utilization of cheese whey powder for ethanol fermentations: effect of operating marameters. Enz Microb Technol 2006, 38, 5, 711-718.
https://doi.org/10.1016/j.enzmictec.2005.11.006
[27] Kaido, T.; Ogura, Y.; Ogawa, K.; Hata, K.; Yoshizawa, A. Effects of post-transplant enteral nutrition with an immunomodulating diet containing hydrolyzed whey peptide after liver transplantation. World J Surg 2012, 36, 1666-1671. https://doi.org/10.1007/s00268-012-1529-9
[28] Kawase, M.; Hashimoto, H.; Hosoda, M.; Morita, H.; Hosono, A. Effect of administration of fermented milk containing whey protein concentrate to rats and healthy men on serum lipids and blood pressure. J Dairy Sci 2000, 83, 2, 255-63.https://doi.org/10.3168/jds.S0022-0302(00)74872-7
[29] Koller, M; Bona, R.; Braunegg, G.; Hermann, C.; Horvat, P.; Kroutil, M.; Martinz, J.; Neto, J.; Pereira, L.; Varila, P. Production of Polyhydroxyalkanoates from Agricultural Waste and Surplus Materials. Biomacromolecules 2005, 6, 561-565. https://doi.org/10.1021/bm049478b
[30] Kopsahelis, N.; Dimou, C.; Papadaki, A.; Xenopoulos, E.; Kuraleou, M.; Kalithraka, S.; Kotseridis, Y.; Papanikolaou, S.; Koutinas AA. Refining of wine lees and cheese whey for the production of microbial oil, polyphenol-rich extracts and value-added co-products. J Chem Technol Biotechnol 2017, 93, 1. https://doi.org/10.1002/jctb.5348
[31] Koutelidakis EA, Mavropoulou R, Karantonis HC, Yanniotis S, Charalampia Dimou. Exploiting cheese whey potential bio-conversion to several value-added functional bio-based compounds with nutritional and industrial food interest. Accepted for poster presentation (21/1/2019). 3rd International Conference on Food and Nutritional Sciences. Paris. France.
[32] Koutinas, A.A.; Papastolou, H.; Dimitrellou, D.; Kopsahelis, N.; Katechaki, E.; Bekatorou, A.; Bosnea, L.A. Whey valorisation: a complete and novel technology development for dairy industry starter culture production. Bioresour Technol 2009, 100, 15, 3734-9.
https://www.ncbi.nlm.nih.gov/pubmed/19254836
[33] Korhonen, H.; Pihlanto, A. Technological options for the production of health-promoting proteins and peptides derived from milk and colostrum. Curr Pharm Des 2007, 13, 8, 829-43. https://doi.org/ 10.2174/138161207780363112
[34] Kossea, M.R.; Panesar, P.S.; Kaur, G.; Kennedy, J.F. Use of immobilized biocatalysts in the processing of cheese whey. Int. J. Biol. Macromol 2009, 45, 437-447. https://doi.org/10.1016/j.ijbiomac.2009.09.005
[35] Kume, H.; Okazaki, K.; Sasaki, H. Hepatoprotective effects of whey protein on D-galactosamine-induced hepatitis and liver fibrosis in rats. Biosci Biotechnol Biochem 2006, 70, 1281-1285. https://doi.org/10.1271/bbb.70.1281
[36] Liu, X.; Chung, Y.K.; Yang, S.T.; Yousef, A.E. Continuous nisin production in laboratory media and whey permeate by immobilized Lactococcus lactis. Process Biochem 2005, 40, 13-24. https://doi.org/10.1016/j.procbio.2003.11.032
[37] Madureira, A.R.; Pereira, C.I.; Gomes, A.M.P.; Pintado, M.E.; Malcata F. Xavier. Bovine whey proteins - overview on their main biological properties. Food Res. Int, 2007, 40, 1197-1211. https://doi.org/10.1016/j.foodres.2007.07.005
[38] Markus, C.R.; Olivier, B.; Haan, E.H. de. Whey protein rich in alpha-lactalbumin increases the ratio of plasma tryptophan to the sum of the other large neutral amino acids and improves cognitive performance in stress-vulnerable subjects. Am J Clin Nutr 2002, 75, 1051-1056. https://doi.org/10.1093/ajcn/75.6.1051
[39] Matsumoto, H.; Shimokawa, Y.; Ushida, Y.; Toida, T.; Hayasawa, H. New biological function of bovine α-lactalbumin: Protective effect against ethanol- and stress-induced gastric mucosal injury in rats. Biosci, Biotechnol and Biochem 2001, 65, 1104-11. https://doi.org/10.1271/bbb.65.1104
[40] Mesomo, M.; Silva, M.F.; Boni, G.; Padilha, F.F.; Mazutti, M.; Mossi, A. et al. Xanthan gum produced by Xanthomonas campestris from cheese whey: production optimization and rheological characterization. J Sci Food Agric 2009, 89, 2440-2445.
https://doi.org/10.1002/jsfa.3743
[41] Modler, W. Pioneer paper: Value-added components derived from whey. American Dairy Science Association 2009, 1-33.
[42] Neville, J. Developments in whey protein and lactose permeate production processes and their relationship to specific product attributes. Int. J. Dairy Techn 2006, 59, 2, 67-69.
https://doi.org/10.1111/j.1471-0307.2006.00244.x
[43] Nasseri, A.T.; Rasoul-Amini, S.; Morowvat M.H.; Ghasemi Y. Single Cell Protein: Production and Process. Am. J. F. Techn 2011, 6,103-116. https://doi.org/10.3923/ajft.2011.103.116
[44] Nagar, S.; Nagal, S. Whey: composition, role in human health and its Utilization in preparation of value- added products. Int J Food Ferment Technol 2013, 3, 2.
https://doi.org/10.5958/2277-9396.2014.00336.5
[45] Niknezhad S.V.; Asadollahi. M.A.; Zamani, A.; Biria, D.; Doostmohammadi, M. Optimization of Xanthan Gum Production Using Cheese Whey and Response Surface Methodology. Food Sci. Biotechnol 2015, 24, 2, 453-460.
https://doi.org/10.1007/s10068-015-0060
[46] Purwandari, U.; Shah, N. P.; Vasiljevic, T. Effects of exopolysaccharide-producing strains of Streptococcus thermophilus on technological and rheological properties of set-type yoghurt. Int. Dairy J 2007, 17, 1344-1352.
https://doi.org/10.1016/j.idairyj.2007.01.018
[47] Panesar, PS., Kennedy J.F., Gandhi D.N., Bunko K. Bio-utilisation of whey for lactic acid production. Food Chem 2007, 105, 1-14. https://doi.org/10.1016/j.foodchem.2007.03.035
[48] Pham, P.L.; Dupont, I.; Roy, D.; Lapointe, G.; Cerning. J. Production of exopolysaccharide by Lactobacillus rhamnosus R and analysis of its enzymatic degradation during prolonged fermentation. Appl. Environ. Microbiol, 2000, 66, 2302-2310.
[49] Petrova, V.Y.; Kujumdzieva A.V. Thermotolerant yeast strains producers of galacto-oligosaccharides. Biotechnoly Biotechnologic. Equip, 2014, 24, 1612-1619. https://doi.org/10.2478/V10133-010-0014-6
[50] Prazeres, A.R.; Carvalho, F.; Rivas, J. Cheese whey management. J Environ Manag 2012, 110, 48-68. https://doi.org/10.1016/j.jenvman.2012.05.018
[51] Rajput, Y.S.; Sharma, R.; Mann B. Chemical and functional properties of glycomacropeptide (GMP) and its role in the detection of cheese whey adulteration in milk: a review. Dairy Sci. Technol 2013, 93, 21-43.
[52] Ramalingam, C., Priya, J., Mundra, S. Applications of microbial polysaccharides in food industry. Int J Pharmaceut Sci Review and Research., 2014, 27, 1, 322-324.
[53] Rammer, P.; Groth-Pedersen, L.; Kirkegaard, T.; Daugaard, M.; Rytter A. BAMLET activates a lysosomal cell death program in cancer cells. Mol Cancer Ther 2010, 9, 24-32. https://doi.org/10.1158/1535-7163
[54] Rantamaki, O.; Tossavainen, O.; Outinen, M.; Tupasela, T.; Koskela, P.; Kaunismaki, M. Functional properties of the whey protein fractions produced in pilot plant processes. Foaming, water-holding capacity and gelation. Milchwissenschaft, 2010, 200055, 10, 569-572.
[55] Ribeiro, V.A.; Burkert, C.A.V. Exopolysaccharides Produced by Rhizobium: Production, Composition and Rheological Properties. J. Pol. And Biophysics Chem 2016, 4, 1, 1-6.
https://doi.org/10.12691/jpbpc-4-1-1
[56] Regenhardt, S.A.; Mammarella, E.J.; Rubiolo, A.C. Hydrolysis of lactose from cheese whey using a reactor with β-galactosidase enzyme immobilized on a commercial UF membrane. Chem and Eng Process, 2013, 34, 3, 375-385.
https://doi.org/10.2478/cpe-2013-0030
[57] Salehi, A.; Gunnerud, U.; Muhammed, SJ.; Ostman, E.; Holst JJ. The insulinogenic effect of whey protein is partially mediated by a direct effect of amino acids and GIP on β-cells. Nutr Metab (Lond) 2012, 9, 48. https://doi.org/10.1186/1743-7075-9-48
[58] Shariatikia, M.; Behbahani, M.; Mohabatkar, H. Anticancer activity of cow, sheep, goat, mare, donkey and camel milks and their caseins and whey proteins and in silico comparison of the caseins. Mol Biol Res Commun 2017, 6, 2, 57-64.
[59] Sawin, E.A.; De Wolfe, T.J.; Aktas, B.; Stroup, B.M.; Murali, S.G.; Steele J.L.; Ney, D.M. Glycomacropeptide is a prebiotic that Reduces De-sulfovibrio bacteria, increases cecal short-chain fatty acids and is anti-inflammatory in mice. Am J Physiol-Gastrointestinal Liver Physiol 2015, 309, 7, G590-G60. https://doi.org/10.1152/ajpgi.00211.2015
[60] Sekine, K.; Watanabe, E.; Nakamura, J.; Takasuka, N.; Kim, DJ.; Asamoto, M.; Krutovskikh, V.; Baba-Toriyama, H.; Ota, T.; Moore, MA.; Masuda, M.; Sugimoto, H.; Nishino, H.; Kakizoe, T.; Tsuda H. Inhibition of azoxymethane-initiated colon tumor by bovine lactoferrin administration in F344 rats. Jpn J Cancer Res., 1997, 88, 6, 23-6. https://doi.org/10.1111/j.1349-7006.1997.tb00413.x
[61] Shin, K.; Wakabayashi, H.; Yamauchi, K.; Teraguchi, S.; Tamura, Y.; Kurokawa, M. et al. Effects of orally administered bovine lactoferrin and lactoperoxidase on influenza virus infection in mice. J Med Microbiol 2005, 54, 717-723.
[62] Smithers, G.W. Whey-ing up the options. Yesterday, today and Tomorrow. Int Dairy J 2015, 48, 2-14. https://doi.org/10.1016/j.idairyj.2015.01.011
[63] Spălăţelu, C. Biotechnological valorization of whey. Innov. Rom Food Biotechnol 2012, 10,1-8.
[64] Takayanagi, T.; Sasaki, H.; Kawashima, A.; Mizuochi, Y.; Hirate, H. A new enteral diet, MHN-02, which contains abundant antioxidants and whey peptide, protects against carbon tetrachloride-induced hepatitis. JPEN J Parenter Enteral Nutr. 2011, 35, 516-522. https://doi.org/10.1177/0148607110381599
[65] De Vuyst, L.; De Vin, F.; Vaningelgem, F.; Degeest, B. Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. International Dairy J 2001, 11, 687-707.
https://doi.org/10.1016/S0958-6946(01)00114-5
[66] Xue, Han.; Yang, Z.; Jing, X.; Peng, Yu.; Huaxi, Y.; Zhang L. Improvement of the Texture of Yogurt by Use of Exopolysaccharide Producing Lactic Acid Bacteria. Biomed Res Int 2016, 11, 687-707. https://doi.org/10.1155/2016/7945675
[67] Yolken, R.H.; Losonsky, G.A.; Vonderfecht, S.; Leister, F.; Wee SB. Antibody to human rotavirus in cow’s milk. N Engl J Med 1985, 312, 605-610. https://doi.org/10.1056/NEJM198503073121002
[68] Zannini, E.; Waters Deborah, M.; Coffey, A.; Arendt, Elke K. Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Appl Microbiol and Biotechnol 2016, 100, 3. 1121-1135.
https://doi.org/10.1007/s00253-015-7172-2