• editor@aipublications.com
  • Track Your Paper
  • Contact Us
  • ISSN: 2456-866X

International Journal Of Chemistry, Mathematics And Physics(IJCMP)

One Modification which Increases Performance of N-Dimensional Rotation Matrix Generation Algorithm

Ognyan Ivanov Zhelezov

Download | Downloads : 9 | Total View : 208

DOI: 10.22161/ijcmp.2.2.1

Journal : International Journal Of Chemistry, Mathematics And Physics(IJCMP)

Share

This article presents one modification of algorithm for generation of n-dimensional rotation matrix M, which rotates given n-dimensional vector X to the direction of given n-dimensional vector Y. Algorithm, named N-dimensional Rotation Matrix Generation Algorithm (NRMG) includes rotations of given vectors X and Y to the direction of coordinate axis x1 using two-dimensional rotations in coordinate planes. Proposed modification decreases the number of needed two-dimensional rotations to 2(Lw-1) were Lw is the number of corresponding components of the two given vectors, that are not equal.

Computations on matrices, Mathematics of computing, Mathematical analysis, Numerical analysis.

[1] O. I. Zhelezov, 2017, N-dimensional Rotation Matrix Generation Algorithm, American Journal of Computational and Applied Mathematics , Vol. 7 No. 2, 2017, pp. 51-57. doi: 10.5923/j.ajcam. 20170702.04.
[2] H. G. Golub, J. M. Ortega, 1993, Scientific Computing and Introduction with Parallel Computing, Academic Press, Inc., San Diego.
[3] G. A. Korn, T. M. Korn, 1961, Mathematical Handbook for Scientists and Engineers (1st ed.), New York: McGraw-Hill. pp. 55–79.
[4] H. Friedberg, A. Insel, L. Spence, 1997, Linear Algebra (3rd ed), Prentice Hall.
[5] D. A. Harville, 1997, Matrix Algebra from Statistician’s Perspective, Softcover.
[6] B. Buchberger, 1985, Multidimensional Systems Theory - Progress Directions and Open Problems in Multidimensional Systems, Reidel Publishing Company.
[7] G. H. Golub, C. F. Van Loan, , 1996, Matrix Computations, 4rd edition. Johns Horkins University Press, Baltimore
[8] M. Cosnard, Y. Robert. Complexity of parallel QR factorization. J. ACM 33, 4 (August 1986), 712-723. DOI=10.1145/6490.214102, 1986.
[9] A. H. Sameh, D. J. Kuck. On Stable Parallel Linear System Solvers. J. ACM 25, 1 (January 1978), 81-91. DOI= http://dx.doi.org/10.1145/322047.322054, 1978.
[10] N. J. Higham, 1996, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelfia.
[11] G. W.Steward, 1976, The economical storage of plane rotations, Numer. Math, 25, 2 1976, 137-139
[12] Matlock, H., and Reese, L.C., 1960, Generalized solutions for laterally loaded piles., Journal of Soil Mechanics and Foun-dation, 86(5), 63–91.
[13] N. K. Bose, 1985, Multidimensional Systems Theory: Progress, Directions, and Open Problems. D.Reidel Publishing Co., Dordrecht, The Netherland.
[14] A. S. Householder, 1958, “Unitary triangularization of a nonsimetric matrix”, J. ACM 5, 339-342, 1958.
[15] E. Anderson, 2000, “Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem” LAPACK Working Note 150, University of Tennessee, UT-CS-00-454, December 4, 2000. page 2.
[16] J. D. Foley, A. van Dam, S. K. Feiner, J. F. Hughes, 1995, “Computer Graphics, Principles and Practice”, 2nd edition in C, Addison-Wesley, ISBN 0-201-84840-6.
[17] G. Strang, 2006, Linear Algebra and its Applications, Thomson Learning Ink, pages 69-135, ISBN 0-03-010567.
[18] St. Roman, Advanced Linear Algebra, second ed., 2005 Springer-Verlag, New York. pages 59-85, ISBN: 978-1-4757-2180-5
[19] J. E. Gentle, 2007, Matrix Algebra: Theory, Computations, and Applications in Statistics, Springer, page 180, ISBN 978-0-387-70872-0
[20] I. R. Shafarevich, A. Remizov, 2013, Linear Algebra and Geometry, Springer, pages 133-160, ISBN 978-3-642-30993-9