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Abstract— We start with the response of ductile materials. To understand the response of these materials to fast 

dynamic loadings, we introduce two approaches to dynamic viscoplasticity. These are the flowstress approach 

and the overstress approach, and strain rate has different roles with these two approaches. At very high loading 

rates the flowstress approach implies very high strength, which is hard to explain by microscale considerations, 

while the overstress approach does not.We then demonstrate the advantage of using the overstress approach by 

applying the two approaches to the elastic precursor decay problem.  

Next use the overstress approach to treat the following problems: 1) the 4th power law response in steady flow of 

ductile materials; 2) high rate stress upturn (HRSU) of ductile materials; and 3) HRSU of brittle materials. With 

these examples we demonstrate the advantage of using the overstress approach over the flowstress approach. It 

follows that HRSU means High (strain) Rate Stress Upturn and not High Rate Strength Upturn, as would follow 

from using the flowstress approach. 

Keywords— strain rate, ductile materials, HRSU. 

 

I. INTRODUCTION 

We start with the response of ductile materials. To 

understand and clarify the role of strain rate in the dynamic 

response of ductile materials,it helps to accept first that 

there are two approaches to dynamic response of materials, 

namely: the flowstress approach and the overstress 

approach. The flowstress approach is the one that’s 

commonly recognized and used, and it appears as user 

subroutines in most or all commercial and non-commercial 

hydrocodes and finite element codes. It seems to us that 

the flowstress approach became common knowledge and 

practice since the work of Wilkins [1], who introduced it 

into his own hydrocode together with his radial return 

scheme. Before that, the common approach to 

viscoplasticity was more like the overstress approach that 

we describe later. 

With the flowstress approach the flowstress Y (also called 

yield stress or strength) is given by: 

 p

eff effY Y P,T, ,    (1) 

where Y= equivalent stressfor plastic flow, P=pressure, 

T=temperature, 
p

eff =effective plastic strain and
p

eff

=effective plastic strain rate.  The main properties of the 

flowstress approach are: 1) the stress point (in stress space) 

is either within (elastic response) or on (plastic response) 

the flow surface (where equivalent stress =Y); 2) the stress 

point may jump from the elastic range to the flow surface 

and vice versa, thereby changing the response from elastic 

(plastic) to plastic (elastic); and3) the transition from 

elastic response to plastic response and vice versa is 

instantaneous. 

For any plastic deformation the effective plastic strain 

increases monotonically. It follows that the flow surface 

becomes larger with loading, and so does the elastic range 

in stress space. In contrast, the effective strain rate may 

jump from low to high values and vice versa depending on 

loading dynamics, and the flow surface would jump with 

it. For a highly vibrating loading sequence this would 

cause a material point to oscillate very quickly. Also, for 

very high loading rates the flow stress would jump to high 

values unless the dependence on strain rate is limited 

artificially. 

The overstress approach recognizes that elastic-plastic 

transition is not instantaneous. On the microscale, plastic 

flow requires creation of dislocations and flow of these 

dislocations through the crystal lattice with a speed that is 

less than the sound speed. Therefore, when a material is 

loaded at a very high rate, like in shock loading, the 

elastic-plastic transition does not have enough time to 

come about, and the state point in stress space may go 

outside the flow surface and still respond elastically, fully 
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or partially. When we consider such a response we refer to 

it asanoverstress approach. 

A simple straightforward way to demonstrate the validity 

of the overstress approach is through a planar shock 

loading: an infinite viscoplastic thick plate is shock loaded 

on its longitudinal end by a stress . Using the flowstress 

approach we get that: 1) as long as (1-)/(1-

2)Y=Y=HEL (Hugoniot Elastic Limit), where  is 

Poisson’s ratio, the response is elastic, and the ingoing 

shock stress is ; 2) when  is above HEL, a precursor 

elastic wave of stress HEL enters the plate, and the main 

wave of stress follows at a slower velocity. Running a 1D 

simulation with a hydrocode that uses the flowstress 

approach, the value of Y that the code calculates depends 

on the mesh resolution. For a higher resolution the strain 

rate is higher, and so is the value calculated for the 

flowstress Y. In Fig. 1 we show an example of such a 

simulation. 

 

Fig.1: Elastic precursor wave from a simulation with the 

flowstress approach. 

 

In the simulation that produced Fig. 1 the plate is stainless 

steel, the ingoing shock stress is 10GPa, the mesh 

resolution is 100 cells/mm and the flowstress dependence 

on strain rate is by the usual logarithmic relation as in Eq. 

(2). 

0 r

ref

Y Y 1 C n
 

  
 

 (2) 

To get a strong dependence we used in the simulation 

Cr=0.1.  

We see from Fig. 1 that: 1) The elastic precursor wave is 

much stronger than the quasistatic HEL (4.5GPa versus 

1.5GPa); and 2) the elastic precursor wave stays constant 

(is not decaying) as it progresses into the plate. 

But it has been known for years [2,3] that in tests we don’t 

get a constant level elastic precursor, but rather a decaying 

elastic precursor wave, which is reproduced when using 

the overstress approach, as we demonstrated in [4]. 

With the overstress approach we define the effective 

plastic strain rate as function of the overstress (equivalent 

stress minus quasistatic stress): 

 p p

eff eff eq qsd f s Y     (3) 

whereseq is the equivalent stress and Yqs is the quasistatic 

yield stress.We refer to the function f as the flow curve of 

the considered material. In [5] we’ve shown that by using 

for f the function: 

eq qsp

eff 0

0

s Y
d d

Y


 

  
 

 (4) 

with just one calibration parameter (d0), and with α=2.4, 

we can reproduce Grady’s 4th power law relation[6]. The 

coefficient d0 may of course depend on pressure, 

temperature and the effective plastic strain. Implementing 

the overstress approach in a hydrocode, we use Eq. (4) 

together with the Prandtel-Rauss equation (dp
ij=λsij). The 

significance of Eq. (4) is that: 1) the plastic strain rate 

increases exponentially with stress; 2) for a given total 

strain rate, the elastic strain rate, and therefore also the 

stress rate, decrease with stress until the stress rate is zero; 

and 3) the elastic strain rate is the difference between the 

total strain rate (as given by the problem dynamics) and 

the plastic strain rate (as given by Eq. (4)). The stress rate 

is therefore positive or negative, according to the sign of 

this difference. 

Duval [8] derived in the 1960s the following approximate 

equation for the rate of change of the elastic precursor in a 

planar shock loading: 

p

L

G
d

h c


 

  (5) 
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where h=Lagrangian longitudinal coordinate, G=shear 

modulus and cL=longitudinal sound speed. Using a1D 

strain flow curve similar to Eq. (4) we get: 

 0

L

G
d Y

h c


   

  (6) 

and we see from Eq. (6) that for >Y, (h) is a 

decreasing function, as obtained in tests. Eq. (6) is of 

course an approximation, and the exact (h) curve can be 

evaluated numerically using a hydrocode. In Fig. 2 we 

show the result of a hydrocode simulation using the 

viscoplastic overstress approach for the same impact 

problem as in Fig. 1.  

 

Fig.2: Elastic precursor wave from a simulation with the 

overstress approach. 

 

We see from Fig. 2 that the elastic precursor wave decays 

as it propagates, as observed in tests.  

The two approaches to dynamic viscoplasticity lead to 

different interpretations of dynamic viscoplastic response. 

According to the flowstress approach, high strain rate 

loading may increase material strength to high values and 

even very high values. This should be in accordance with 

an appropriate microscale mechanism (that would lead for 

instance to a very high mobile dislocation density). In 

contrast, by the overstress approach strength does not 

change much. What may increase to high values is the 

stress. This is quite legitimate, and does not require special 

interpretation on the microscale.  

In the next three sections we present examples in which we 

predict literature test data using the overstress approach. In 

section 2 we reproduce the so called 4 law. In section 3 

we reproduce the phenomenon of high rate stress upturn in 

ductile materials for strain rates above 104/s, and in section 

4 we reproduce high rate stress upturn in brittle materials 

for strain rates above 10/s. Literature data for such stress 

upturn are given mainly for concrete. 

 

Predicting the of 4th power law using the overstress 

approach 

Using quite accurate (1 ns resolution) planar impact tests, 

Grady and others [6 ] have shown that for steady wave 

shapes in viscoplastic materials (beyond the elastic 

precursor decay range) the following relations holds: 

 max 4     (7) 

where and dmax/dt are defined in Fig. 5.  

And test results from Barker [7] for aluminum, reproduced 

in Fig. 3, were the first to demonstrate this relation. 

 

Fig.3: Log-log plot of shock stress (or stress jump) versus 

longitudinal maximum strain rate. From Barker (1968). 

 

To reproduce the results of Eq. (7) and Fig. 3, we start 

from the steady planar (1D strain) equations for 

viscoplastic materials which are [8]: 
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 
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 (8) 

where G=shear modulus, cL=longitudinal sound speed, 

U=wave speed, u=particle velocity, =longitudinal strain, 

and dp=dp
eff=longitudinal deformation rate= effective 

plastic deformation rate.  

Eqs. (8) also describe the Rayleigh line. Dividing any two 

of these equations one by the other yields the Rayleigh line 

equations derived from the Hugoniot equations. This is in 

accordance with the well-known result that for a steady 

viscoplastic wave, the state point moves along the 

Rayleigh line. Eqs. (8) were developed in the 1960s by 

Duvall and coworkers[8]. To derive these simple relations 

he ignored the difference between the Hugoniot and 

isentrope curves. The derivation is therefore a good 

approximation only below a stress of about 20 GPa. Here 

we integrate the system of ODEs (8) using a standard 4th 

order Runge-Kutta solver. As an example we show in Figs. 

4 and 5 histories of stress and strain for max=0.05. We use 

the parameters of aluminum, and for the flow curve 

exponent we use α=2. 

 

Fig.4: Strain rate history of a steady viscoplastic wave for 

max=0.05. 

 

In Fig. 6 we show the result obtained for several values of 

the stress jump =1-HEL (see Fig. 5). We see from Fig. 

6 that 1) we get a straight line in a log-log plot (as in tests), 

and the straight line equation is: 

 

Fig.5: Stress history of a steady viscoplastic wave for 

max=0.05. 

 

 max B


    (9) 

2) the straight line slope (in Fig. 6) is =1/0.296=3.378<4; 

and 3) the stress jump is too low compared to Barker’s 

data (Fig. 2), which is easy to verify at the lowest strain 

rate. To correct for this difference and move the straight 

line up, we need to decrease the coefficient d0 of the flow 

curve equation. 

 

Fig.6: Log-log plot of stress jump versus maximum strain 

rate for arbitrary parameters of the overstress flow curve. 
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To calibrate the exponent α we performed computations 

with different values of α without changing d0. From two 

such computations we evaluate by: 

 

 
max 2 max1

2 1

n

n

 
 

 
 (10) 

We show the results for (α) in Fig.7.  

 

Fig.7: The relation (α) evaluated from our computations. 

 

We see from Fig. 7 that to get =4 (as obtained on the 

average in tests), we need to use α=2.38. We also adjusted 

the value of d0 to 1734/s to get agreement with Barker’s 

results (see Fig. 3), and in Fig. 8 we show the agreement 

obtained. 

 

Fig.8: Reproduction of Barker’s test results for aluminum 

with the calibrated values of α and d0. 

 

In summary: from planar impact (1D strain) tests with 

many viscoplastic materials one gets after some distance 

into the target a power law relation, as in Eq. (9), with =4 

(to a good approximation). This result is known as the 4th 

power law of dynamic viscoplasticity. It would make sense 

for researchers to look for an overall explanation of the 4th 

power law. But we don’t see such an explanation in the 

literature. Also, it would make sense for computational 

modelers to try reproduce the 4th power response with a 

hydrocode that uses the flowstress approach to 

viscoplasticity. But we don’t find such trials in the 

literature. It seems to us that such trials were unsuccessful, 

for one or both of two reasons. Either the results were 

obscured by artificial viscosity, or the flowstress approach 

to viscoplasticity is not appropriate, similar to the elastic 

precursor decay phenomenon described in the introduction.  

Here we reproduce the 4th power law using the overstress 

approach to dynamic viscoplasticity, integrating directly 

the time dependent ODEs describing a steady viscoplastic 

plane wave. In this way we’re able to evaluate a steady 

viscoplastic wave with minimal effort and to a desired 

precision. Our overstress approach flow curve includes 

two free parameters: 1) the exponent α that determines the 

slope  of the test results(we find α=2.38); and 2) the flow 

curve coefficient d0 that moves the test results line up and 

down. We find that to reproduce Barker’s data we need to 

use d0=1734/s. 

It turns out that we can calibrate the flow curve parameters 

directly from 4th power low data. 

 

II. HIGH RATE STRESS UPTURN IN 

DUCTILE MATERIALS 

Ductile materials (mainly metals) have been observed to 

exhibit HRSU (High Rate Stress Upturn) at strain rates 

between 103 and 104/s. Such a HRSU is quite important to 

consider when dealing with fast dynamic loadings. An 

example of HRSU of copper, taken from the literature [9] 

is shown in Fig. 9. Another example is from the work of 

Couque [10] (not reproduced here) on six metals. From 

this example we can see that all six metals have a similar 

HRSU response. 

The S in HRSU may be interpreted either as STRESS or as 

STRENGTH. For those using the flowstress approach S 

stands for strength, because with this approach stremgth 

goes along with stress upon loading in the plastic range. 

But accepting strength upturn is hard to justify on the 

microscale (dislocation mechanics). On the other hand, for 

those using the overstress approach, S stands for stress, 

which does not impose any problem. As most workers in 

the field use the flowstress approach, the HRSU 
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phenomenon has led to a controversy. Some [9, 10] believe 

that HRSU is a real and important phenomenon, and others 

[11] claim that it doesn’t exist.  

Here we propose a way out of the controversy. Using the 

overstress approach we show that: 1) S in HRSU means 

stress, and there’s no need to come up with microscale 

models to justify very high values of strength; and 2) 

HRSU responses of many metals are quite similar, as they 

represent their flow curves. And we’ve shown in section 2 

that flow curves of different materials are quite similar. 

 

Fig.9: Test data of HRSU for copper from several sources. 

 

Next we use the flow curve that we calibrated in section 2 

for aluminum to predict its HRSU response. Inverting the 

flow curve equation we get: 

1 1
p

eff eff
eq 0 0

0 0

d
s Y 1 Y 1

d

       
         

         
                

(11) 

Using α=2.38 and d0=1.734/s for aluminum from the 

previous section we get from Eq. (11) the HRSU curve 

shown in Fig. 10 together with Couque’s data. From Fig. 

10 we see that: 1) the computed curve has the right shape, 

similar to the curves in Fig. 9; and 2) agreement with 

Couque’s data is quite good.In Fig. 11 we show that by 

increasing the coefficient d0, we can move the upturn 

curve to the right.  

In summary, we show here that the HRSU of ductile 

materials follows directly from the overstress approach to 

dynamic viscoplasticity. It turns out that the HRSU curve 

is just an inverse representation of the material flow curve. 

In the previous section we’ve shown that many materials 

have the same flow curve exponent α=2.38, and that their 

flow curves are therefore similar. We conclude that this is 

why the HRSU curves of many materials are similar, as 

shown experimentally by Couque [10]. 

 

Fig.10: Inverted flow curve representing the HRSU curve 

compared with Couque’s data for aluminum. 

 

 

Fig.11: Influence of the coefficient d0 on the upturn strain 

rate. 

 

III. HIGH RATE STRESS UPTURN IN BRITTLE 

MATERIALS 

It turns out that brittle materials also exhibit HRSU, but for 

different reasons. There are many kinds of brittle materials 

like ceramics, glasses and different types of rocks. But 

most data on HRSU of brittle materials by far is for 

concrete. We show an example of such data in Fig. 12. 
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Fig.12: Dynamic increase factor as function of strain rate 

in concrete samples in tension. From many sources. Taken 

from [12]. 

 

As is well known, the dynamic response of brittle 

materials is quite different from that of ductile materials.  

In spite of that, the dynamic response of concrete to high 

rate loading is quite similar to that of ductile materials. The 

main difference is that high rate stress upturn of concrete 

occurs at a lower strain rate of about 100/s in compression 

and 1/s in tension. As the quasistatic strength of concrete 

varies with small changes of production details, it is 

customary to describe dynamic changes of strength or 

stress in terms of the dynamic factor DIF (DIF=Dynamic 

Increase Factor), relative to the quasistatic strength. From 

the example in Fig. 12 we see that although there’s a lot of 

spread in the data, the general trend is obvious, brittle 

materials (or at least concrete) do exhibit a HRSU response 

similar to ductile materials. 

To model the HRSU of brittle materials we use our brittle 

materials dynamic response model (BMDRM), which we 

developed previously. With our BMDRM we assume that 

a brittle material has three damage threshold curves in the 

SP (shear pressure) plane. These curves are shown in Fig. 

13. The main threshold curve, denoted by Ai is the shear 

fracture threshold, which increases with pressure. The two 

others are damage threshold curves in tension (Ti) and in 

compression (Pi). In what follows we deal only with the 

shear threshold. 

It’s important to emphasize that a threshold curve tells us 

only about the onset of damage when the material is still 

intact (undamaged) and elastic, and not about the fully 

damaged material that may flow plastically. 

 

 

Fig.13: Damage threshold curves shown in the shear-

pressure plane. 

 

 When a computational cell (or a material control volume) 

is on a damage threshold curve, it does not fail 

immediately, but only starts to accumulate damage. When 

the loading is fast, the state point (in the SP plane) may 

protrude out of the threshold curve. It follows that our 

BMDRM is an overstress approach model. As explained in 

the previous sections, the overstress approach recognizes 

that threshold crossings (of various kinds) are not 

instantaneous, but require time. And this is why threshold 

crossings in response to fast dynamic loadings may lag 

behind the loading process.  

When the state point in the SP plane is beyond the 

threshold curve, the material in the considered 

computational cell undergoes various types of fracture, 

according to the considered material properties. In a 

macroscopic model (which we consider here) we describe 

the amount of fracture by means of the macroscopic 

variable called damage (D). It is customary to define the 

range of change of D between 0 and 1: 

When D=0, the material is intact. 

When 0<D<1 the material is partly fractured, but still 

responds elastically. 

When D=1, the material is fractured to such an extent that 

it may flow plastically, and we define it as failed.  

We assume that a failed material responds like a granular 

material. When loaded it may flow plastically, but because 

of granular friction, its resistance to flow (or its strength) 

increases with pressure. 

We also assume that when the state point is out of the 

threshold curve, damage increases. And similar to other 

overstress approach situations, we assume that the rate of 

increase of damage goes up as distance of the state point 

from the threshold curve increases. 

In addition we assume, as in the JH models [13], that the 

threshold curve moves towards the fully failed curve 
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(denoted by Af in Fig. 13), according to the following 

linear relation: 

       D i fS P 1 D S P DS P    (12) 

For the rate of change of damage we also assume a linear 

relation (from lack of any specific data): 

 D DD A S S   (13) 

Where S=Seq is the equivalent stress, and the coefficient 

AD is to be calibrated from tests. 

In this way damage rate may increase without limit. But 

the rate of damage accumulation is limited by the 

maximum rate of fracture formation and propagation. We 

therefore limit the rate of damage accumulation by: 

maxD D  (14) 

It turns out (see later) that such a limitation controls the 

upturn strain rate. 

To demonstrate the HRSU response of concrete we 

perform computations on a single cell (0D computations). 

By using different relations between the boundary 

velocities (ux and uy=uz), we get various paths of the state 

point in the SP plane. For uy/ux>-0.5 the material is in 

compression, and otherwise it is in tension. We show such 

paths in Fig. 14. At the endpoint of each path D=1 and the 

material is fully damaged. 

 

Fig.14: Different paths of material response when 

changing the ratio ux/uy. 

 

Using different values for ux we compute S and DIF as 

function of strain rate. From the results of these 

computations we get curves with an HRSU, similar to 

what is seen in tests. In Fig. 15 we show two HRSU curves 

obtained from these computations, one with uy/ux=-0.1 

(compression), and the other with uy/ux=-0.8 (tension).  

 

Fig.15: Equivalent stress (S) as function of strain rate for 

two values of uy/ux, one in compression and the other in 

tension. 

 

We see from Fig. 15 that: 1) for different loading 

conditions the response is similar but a little different. This 

may cause some of the spread seen in Fig. 12; 2) the 

curves upturn at a strain rate of about 1/s, which is 

consistent with data; and 3) the high strain rate slopes are 

also consistent with data (stress increases 5 folds for 10 

folds increase in strain rate). 

In Fig. 16 we show the influence of the maximum damage 

accumulation rate. 

 

Fig.16: DIF as function of strain rate for different values 

of the maximum rate of damage accumulation. 
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We see from Fig. 16 that by increasing the maximum rate 

of damage accumulation 10 fold (from 500 to 5000/s), the 

upturn strain rate increases from about 1/s to about 10/s. 

In summary: brittle materials exhibit HRSU similar to 

ductile materials, although their response to dynamic 

loading is much different. The main difference of the two 

types of materials is that the HRSU strain rate of the brittle 

materials is much lower, between 1 and 10/s. 

We compute here the HRSU of concrete. To this end we 

use our dynamic response model for brittle materials 

developed previously, which is different from the JH 

models [13] that are widely accepted. Our brittle material 

response model is also an overstress approach model. We 

compute damage accumulation rate as function of 

overstress relative to a damage threshold curve. We 

introduce a maximum damage accumulation rate, which 

controls the upturn strain rate. 

 

IV. SUMMARY 

We demonstrate here the power of the so called overstress 

approach to dynamic response of materials. We start (in 

the introduction) by describing the two approaches to 

dynamic viscoplasticity, the flowstress approach and the 

overstress approach. The flowstress approach is the one 

that is commonly accepted and practiced. But there are 

some types of response it does not predict correctly. We 

demonstrate that with the elastic precursor decay problem. 

The two approaches to dynamic viscoplasticity differ in 

the way they treat strain rate. By the flowstress approach 

strain rate (or rather effective plastic strain rate) is a state 

variable that strength depends on. When strain rate is very 

high (like in a shock), strength should be very high too, 

and it’s hard to explain that with microscale 

considerations. By the overstress approach strength does 

not depend directly on strain rate, but instead plastic strain 

rate depends on stress, which can go beyond the quasistatic 

strength. Using the overstress approach we’re able to 

predict the elastic precursor decay behavior. Duvall [8] did 

that in the 1960s. He used the overstress approach in a 

natural way, before the flowstress approach became 

dominant.  

In section 2 we use the overstress approach to dynamic 

viscoplasticity to predict the 4th power law of steady 

viscoplastic waves observed in tests with many materials. 

Using the data we’re able to calibrate the two parameters 

of the flow curve, which expresses the dependence of 

plastic strain rate on equivalent stress.  

In section 3 we use the flow curve calibrated in section 2 

to predict the HRSU of viscoplastic materials. With the 

overstress approach the S in HRSU stands for stress and 

not for strength, and in this way the controversy over 

HRSU may be dissolved. It turns out that the HRSU curve 

is just the overstress approach flow curve with exchanged 

axes.  

The overstress approach applies not just to dynamic 

viscoplasticity (crossing from elastic to plastic response), 

but to crossing of a response threshold in general. This is 

why we’re able to apply the overstress approach to predict 

the HRSU response of brittle materials. In section 4 we 

outline our brittle materials response model and apply it to 

predict the HRSU of concrete. Our results are quite similar 

to available data. 
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