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Abstract— The increasing prevalence of decentralized multiagent systems has spurred interest in 

Federated Reinforcement Learning (FRL) as a privacy-preserving framework for collaborative learning. 

However, scaling FRL to multi-agent settings introduces significant challenges, particularly in 

communication efficiency, decentralized aggregation, and handling nonstationary environments. This 

survey explores recent advancements in Scalable Decentralized Multi-Agent Federated Reinforcement 

Learning (MA-FRL), with a focus on communication efficient strategies and decentralized aggregation 

techniques. We review key approaches such as selective agent communication, local model updates, and 

gradient compression, analyzing their impact on scalability, convergence, and performance trade-offs. 

Additionally, we highlight comparative insights into different methods, their limitations, and real-world 

applicability in decentralized systems such as autonomous vehicles and smart grids. By identifying open 

challenges, including robustness against adversarial attacks and adaptive communication mechanisms, we 

outline promising directions for advancing decentralized MAFRL. 

Keywords— Federated Reinforcement Learning, Multi-Agent Systems, Decentralized Learning, 

Scalability, Communication Efficiency, Aggregation Techniques, Non-Stationarity 

 

I. INTRODUCTION 

The increasing prevalence of decentralized multi-agent 

systems has spurred interest in Federated Reinforcement 

Learning (FRL) as a privacy-preserving framework for 

collaborative learning. FRL enables agents to learn policies 

without sharing raw data, making it particularly beneficial 

in privacy-sensitive applications such as autonomous 

systems, smart grids, and the Internet of Things (IoT) [1], 

[2]. However, scaling FRL to multi-agent environments 

presents significant challenges, particularly in 

communication efficiency, decentralized aggregation, and 

handling non-stationary dynamics. 

Frequent model updates across many distributed agents 

increase bandwidth consumption, posing a major scalability 

challenge [3]. As multiple agents learn and adapt 

simultaneously, the underlying environment dynamics 

constantly change, making policy convergence more 

difficult [4]. Variations in computational resources, 

network connectivity, and local datasets introduce 

inconsistencies in the learning process, affecting overall 

performance [5]. Additionally, decentralized architecture 

must efficiently aggregate updates in a peer-to-peer fashion, 

as opposed to traditional centralized federated learning 

setups [6]. 

This paper presents a focused survey on Scalable 

Decentralized Multi-Agent Federated Reinforcement 

Learning (MA-FRL), emphasizing communication-efficient 

strategies and decentralized aggregation techniques. We 

analyze key approaches, including local model updates, 

selective agent communication, gradient compression, and 

decentralized aggregation (e.g., peer-to-peer and 

blockchain-based strategies), examining their impact on 

scalability, convergence, and robustness. 
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Our key contributions are as follows: (1) a systematic 

review of recent advancements in scalable MA-FRL with a 

focus on communication-efficient learning and 

decentralized aggregation, (2) a comparative analysis 

highlighting tradeoffs between different techniques in terms 

of scalability, convergence speed, and robustness, and (3) a 

discussion of open challenges and promising directions for 

future research, including adaptive communication 

mechanisms and robustness against adversarial agents. 

 

II. SCALABILITY CHALLENGES IN 

DECENTRALIZED MA-FRL 

Scaling Multi-Agent Federated Reinforcement Learning 

(MA-FRL) presents several challenges that hinder efficient 

learning in decentralized settings. These challenges stem 

from the need to balance communication efficiency, policy 

convergence, and computational constraints while ensuring 

robustness in dynamic and heterogeneous environments. 

Among these challenges, communication overhead and 

nonstationarity are particularly crucial, as they directly 

impact the scalability and stability of decentralized MA-

FRL. 

A. Communication Overhead and Bandwidth Constraints 

A key scalability bottleneck in decentralized MA-FRL is 

the high communication overhead resulting from frequent 

model updates across multiple agents. In traditional 

Federated Learning (FL), a central server aggregates local 

models, reducing direct inter-agent communication. 

However, decentralized MA-FRL lacks a central 

coordinator, requiring agents to exchange updates through 

peer-to-peer or network-based aggregation [1], [3]. As the 

number of agents increases, the volume of exchanged 

gradients, policies, and rewards grows significantly, leading 

to high bandwidth consumption and increased latency. 

Communication-efficient strategies such as gradient 

compression, asynchronous updates, and selective model 

aggregation are essential for mitigating these issues. 

Furthermore, heterogeneity in computational resources and 

network connectivity can exacerbate communication 

inefficiencies, as some agents may experience delays in 

transmitting updates, affecting overall synchronization. 

B. Non-Stationarity in Multi-Agent Interactions 

Scalability in decentralized MA-FRL is further complicated 

by the non-stationarity of the learning environment. Since 

agents update their policies independently, the underlying 

environment dynamics shift continuously, making it 

difficult for policies to converge [4]. This challenge is 

exacerbated in large-scale systems where agents interact 

asynchronously and must adapt to evolving behaviors of 

other agents. Nonstationarity also directly affects 

decentralized aggregation, as policy updates may become 

outdated or misaligned when integrated with others. 

Addressing non-stationarity requires approaches such as 

opponent modeling, meta-learning, and stabilized policy 

updates, which improve adaptability and convergence in 

dynamic settings. 

C. Heterogeneity in Computational and Data Resources 

Decentralized MA-FRL agents often operate under varying 

computational capacities, network conditions, and local 

datasets. Unlike centralized FL, where model updates can 

be synchronized, decentralized learning must account for 

heterogeneous agent capabilities [5]. Some agents may 

have limited processing power or intermittent connectivity, 

resulting in delayed or incomplete updates. Additionally, 

heterogeneous local data sets can lead to biased model 

updates, reducing the overall generalizability of learned 

policies. Strategies such as federated averaging with 

adaptive weighting, edge-computing-assisted federated 

learning, and hierarchical aggregation frameworks can help 

mitigate these disparities by optimizing model 

synchronization based on individual agent constraints. 

D. Decentralized Aggregation and Model Synchronization 

The absence of a central server in MA-FRL necessitates 

efficient decentralized aggregation techniques to ensure 

scalable learning. Traditional FL methods rely on server-

based aggregation (e.g., FedAvg [3]), which does not 

directly translate to fully decentralized settings. Peer-to-

peer aggregation, graph-based federated learning, and 

blockchain-assisted consensus mechanisms have been 

explored to address this limitation [6]. However, these 

methods introduce trade-offs in terms of scalability, 

security, and communication costs. Since decentralized 

aggregation must account for varying agent participation 

rates and potential network failures, it is necessary to 

develop adaptive aggregation strategies that balance 

efficiency with robustness. A key research direction is 

analyzing the impact of different aggregation techniques on 

convergence and stability in decentralized MA-FRL 

environments. 

E. Scalability vs. Privacy Trade-Offs 

Ensuring scalability while maintaining privacy is a 

fundamental challenge in decentralized MA-FRL because 

many privacy-preserving techniques, such as differential 

privacy and secure multi-party computation (SMPC), 

inherently introduce additional computational and 

communication overhead [2]. While these methods help 

protect agent data from adversarial threats, they can 

significantly increase latency and resource consumption, 

making them difficult to scale to large networks. 

Techniques like local differential privacy (LDP) and secure 

aggregation with reduced computational complexity offer 

https://dx.doi.org/10.22161/eec.86.2


Myakala and Kamatala       Scalable Decentralized Multi-Agent Federated Reinforcement Learning: Challenges and Advances 

ISSN: 2456-2319 

https://dx.doi.org/10.22161/eec.86.2                                                                                                                                                10 

promising solutions but require further exploration to 

optimize the trade-off between privacy and scalability. 

Additionally, integrating privacy-preserving mechanisms 

with adaptive communication protocols could help improve 

the feasibility of secure decentralized MA-FRL systems. 

F. Summary and Research Directions 

Addressing scalability in decentralized MA-FRL requires a 

multi-faceted approach that optimizes communication, 

aggregation, and adaptation in dynamic multi-agent 

environments. Future research should explore adaptive 

communication protocols, hierarchically federated learning 

frameworks, and efficient decentralized consensus 

mechanisms to enhance scalability while maintaining 

robustness and privacy. Additionally, deeper investigations 

into the interplay between communication overhead, 

heterogeneity, and non-stationarity will be crucial in 

developing scalable and resilient MA-FRL frameworks. 

The next section reviews existing solutions that tackle these 

challenges. 

 

III. EXISTING APPROACHES 

Addressing the scalability challenges in decentralized 

Multiagent Federated Reinforcement Learning (MA-FRL) 

requires efficient communication strategies and robust 

aggregation mechanisms. Existing research has proposed 

various techniques to reduce communication overhead, 

mitigate nonstationarity, and enhance decentralized policy 

synchronization. This section reviews key approaches 

categorized into communication-efficient methods and 

decentralized aggregation strategies, explicitly linking each 

to the scalability challenges discussed in Section II. 

A. Communication-Efficient Strategies 

Communication efficiency is crucial for scalable MA-FRL, 

as excessive message exchange can lead to network 

congestion and high latency. A key trend in 

communication-efficient MAFRL is the development of 

adaptive strategies, where agents dynamically adjust 

communication parameters based on factors such as 

network conditions, computational resources, and learning 

progress. This adaptability is crucial for optimizing 

performance in heterogeneous and dynamic environments. 

Local Model Updates: Local model updates reduce 

communication overhead by allowing agents to perform 

multiple training iterations before synchronizing with 

others. This directly addresses the communication overhead 

challenge by decreasing the frequency of global 

synchronizations. Methods such as FedAvg [3] and 

FedProx [2] adjust local computation intensity based on 

agent resources. However, this approach introduces a trade-

off, as excessive local updates can lead to model 

divergence, particularly in non-IID (non-independent and 

identically distributed) environments. 

Gradient Compression and Quantization: Gradient 

compression techniques such as sparse updates, low-bit 

quantization, and sketching [7] aim to reduce bandwidth 

usage by transmitting only the most significant updates or 

encoding them efficiently. These methods specifically 

address the bandwidth constraints in large-scale multi-agent 

systems. While compression reduces communication costs, 

it may introduce approximation errors that affect 

convergence. Recent approaches incorporate adaptive error 

compensation to balance communication efficiency with 

learning performance. 

Selective Agent Communication: Instead of broadcasting 

updates to all agents, selective communication strategies 

identify the most relevant peers for information exchange. 

This technique is particularly effective in addressing both 

communication overhead and heterogeneity, as agents can 

focus updates on influential neighbors while ignoring low-

impact interactions. Methods such as gossip learning [8] 

and attention-based message dynamically determine which 

agents contribute the most to learning. By prioritizing high-

impact interactions, these methods improve communication 

efficiency while maintaining policy performance. 

Asynchronous Communication: Traditional FL relies on 

synchronous updates, where all agents must wait for each 

other before aggregating updates. In contrast, asynchronous 

communication allows agents to update their models at 

different times, reducing idle time and improving 

responsiveness. This approach is particularly useful for 

addressing the heterogeneity challenge, as it prevents 

slower agents from delaying overall learning progress. 

Methods such as FedAsync [9] and staleness-aware 

aggregation compensate for delayed updates, ensuring 

robustness against network delays and computational 

disparities. 

B. Decentralized Aggregation Strategies 

Decentralized MA-FRL eliminates reliance on a central 

server, requiring alternative aggregation mechanisms for 

combining agent policies. These methods address the 

decentralized aggregation challenge by ensuring that agents 

can collaboratively learn without centralized coordination. 

Peer-to-Peer Aggregation: In peer-to-peer (P2P) learning, 

agents directly share updates with their neighbors without a 

central coordinator. This method enhances scalability by 

removing bottlenecks associated with server-based 

aggregation. Graph-based techniques such as D-FL [10] 

and Diffusion FL enable agents to propagate updates across 

a network topology, gradually converging to a global 

policy. However, P2P aggregation is vulnerable to network 

partitioning, requiring robust neighbor selection policies. 
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Blockchain-Assisted Federated Learning: Blockchain 

technology has been explored as a means of enabling 

decentralized and trustworthy aggregation in FL [11]. By 

storing model updates on a distributed ledger, blockchain 

based FL ensures transparent and tamper-resistant 

aggregation. Techniques such as smart contract-driven FL 

enable secure model sharing without centralized control. 

However, the computational and storage overhead of 

blockchain integration remains a challenge, particularly for 

large-scale deployments. 

Hierarchical Federated Learning: Hierarchical FL 

introduces intermediate aggregation layers, where groups of 

agents first synchronize locally before communicating with 

the global network. This reduces overall communication 

complexity and allows for more structured policy updates 

[12]. Hierarchical aggregation is particularly useful in 

large-scale multi-agent environments where direct agent-to-

agent communication may be impractical. However, 

designing an optimal hierarchy requires balancing local and 

global updates to ensure efficient learning. 

Decentralized Consensus Mechanisms: Consensus-based 

approaches, such as federated averaging with decentralized 

optimization [13], allow agents to reach agreement on 

policy updates without a central server. These techniques 

specifically target the scalability challenge by enabling 

largescale distributed learning while reducing reliance on 

predefined network structures. However, ensuring stability 

and efficiency in fully decentralized settings remains an 

open research challenge. 

C. Comparative Analysis of Existing Methods 

The methods discussed above offer different trade-offs in 

terms of communication efficiency, convergence speed, and 

robustness. Table I provides a comparative summary of key 

approaches, highlighting their advantages, limitations, and 

scalability impact. 

Table I: Comparison of Communication-Efficient and Decentralized Aggregation Strategies 

 

D. Summary and Research Directions 

Existing solutions address various aspects of scalability in 

decentralized MA-FRL, yet significant challenges remain. 

Communication-efficient strategies such as adaptive 

gradient compression and dynamic agent clustering could 

further optimize bandwidth usage. Additionally, improving 

decentralized aggregation through hybrid peer-to-peer and 

hierarchical models could enhance stability in large-scale 

deployments. Future work should also explore the 

integration of privacy-preserving techniques with adaptive 

communication strategies to balance security and 

efficiency. The next section provides a comparative 

analysis of these techniques, evaluating their effectiveness 

in different MA-FRL scenarios. 

IV. COMPARATIVE ANALYSIS OF KEY 

TECHNIQUES 

The scalability of decentralized Multi-Agent Federated 

Reinforcement Learning (MA-FRL) depends on a balance 

between communication efficiency, policy convergence, 

and robustness. This section provides a comparative 

analysis of the existing techniques discussed in Section III, 

focusing on their trade-offs in terms of scalability, 

communication overhead, convergence speed, and 

adaptability in heterogeneous environments. 

A. Trade-offs in Communication Efficiency 

Communication-efficient strategies are crucial for scaling 

MA-FRL, as they impact the frequency, size, and necessity 

of inter-agent message exchanges. Methods that reduce 

Method Key Advantage Potential Limitation Scalability 

Impact 

Local Updates Reduces communication 

frequency 

Can lead to model divergence High 

Gradient Compression Minimizes bandwidth usage May introduce approximation errors Moderate 

Selective Communication Focus updates on relevant agents Requires efficient neighbor 

selection 

High 

Asynchronous Updates Improves responsiveness Needs staleness-aware aggregation High 

Peer-to-Peer Aggregation Fully decentralized Vulnerable to network partitioning Moderate 

Blockchain FL Ensures secure aggregation High computational overhead Low 

Hierarchical FL Reduce direct agent 

communication 

Requires structured hierarchy High 

Decentralized Consensus Scalable without central server Needs efficient optimization 

protocols 

High 
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communication overhead can improve scalability but may 

introduce delays in convergence due to limited information 

sharing. 

Table II summarizes the trade-offs of key communication 

efficient approaches. 

Table II: Comparison of Communication-Efficient Strategies 

Method Communication 

Overhead 

Convergence Speed Scalability 

Local Model Updates Low  

(fewer global updates) 

Moderate  

(risk of slower convergence) 

High  

(reduces communication needs) 

Gradient 

Compression 

Low  

(smaller message sizes) 

Potential for Slower Convergence 

(approximation errors) 

Moderate  

(depending on compression level) 

Selective 

Communication 

Low  

(fewer agents contacted) 

High  

(focus on key updates) 

High  

(minimizes unnecessary 

interactions) 

Asynchronous 

Communication 

Moderate  

(independent updates) 

High  

(avoids waiting delays) 

High  

(less synchronization required) 

------------- 

The effectiveness of these communication strategies 

directly influences decentralized aggregation methods, 

which must balance scalability with policy 

synchronization. 

B. Effectiveness of Decentralized Aggregation Strategies 

Decentralized aggregation eliminates the need for a central 

server but requires efficient coordination to ensure policy 

alignment. Aggregation methods must handle 

communication constraints while maintaining robustness 

against network failures. Table III presents a comparative 

summary of key aggregation techniques. 

Table III: Comparison of Decentralized Aggregation Strategies 

Method Scalability Robustness to Failures Computational Cost 

Peer-to-Peer Aggregation High  

(distributed updates) 

Moderate  

(robustness depends on network 

topology) 

Low  

(minimal overhead) 

Blockchain FL Low  

(ledger overhead) 

High  

(secure and tamper-proof) 

High  

(computationally intensive) 

Hierarchical FL High 

 (structured aggregation) 

High  

(localized stability) 

Moderate  

(complexity of hierarchy 

management) 

Decentralized Consensus High 

 (distributed 

optimization) 

Moderate  

(depends on consensus 

protocol) 

Moderate  

(computational cost depends on the 

specific protocol) 

------------- 

Scalability in decentralized aggregation is also influenced 

by the level of heterogeneity among agents and the 

stability of learning policies in non-stationary 

environments. 

C. Impact of Heterogeneity and Non-Stationarity 

Heterogeneity in agent resources and dynamic 

environment shifts present significant obstacles to scalable 

MA-FRL. Adaptive strategies, such as dynamic model 

synchronization and staleness-aware aggregation, help 

mitigate these issues. However, non-stationarity remains a 
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fundamental challenge, requiring techniques such as 

opponent modeling and meta-learning to improve learning 

stability in changing environments. 

The relationship between heterogeneity, non-stationarity, 

and scalability is summarized in Table IV. 

Table IV: Impact of Heterogeneity and Non-Stationarity on Scalability 

Challenge Effect on Scalability Existing Mitigation Open Issues 

Heterogeneous 

Resources 

Moderate  

(slows convergence) 

Adaptive Synchronization  

(weight based on resources) 

Unbalanced Model 

Contributions 

Non-Stationary Agents High  

(policies may diverge) 

Opponent Modeling  

(anticipate agent shifts) 

Slow Adaptation to Changes 

Variable Data 

Distribution 

High  

(bias in policy updates) 

Meta-Learning  

(fast adaptation) 

Reduced Policy Generalization 

------------- 

D. Summary and Future Research Directions 

The analysis highlights the necessity of hybrid strategies 

that combine multiple approaches to address different 

scalability challenges. While local updates and gradient 

compression reduce communication costs, they need to be 

balanced with aggregation techniques that ensure 

convergence. Similarly, decentralized aggregation must be 

designed with robustness and efficiency in mind, favoring 

hybrid approaches such as hierarchical peer-to-peer 

models that integrate structured communication with 

flexibility. 

Future research should focus on: 

• Adaptive Aggregation Mechanisms: Developing 

methods that dynamically adjust model weights based 

on agent contributions, network conditions, and 

learning performance to optimize scalability. 

• Privacy-Preserving Scalability: Investigating hybrid 

privacy-preserving techniques that combine differential 

privacy with secure aggregation protocols to minimize 

computational overhead. 

• Resilient Learning in Dynamic Systems: Developing 

fast adaptation techniques for non-stationary 

environments, including meta-learning and dynamic 

reinforcement strategies for scalable multi-agent 

collaboration. 

The next section explores open challenges and potential 

directions for advancing scalable decentralized MA-FRL. 

 

V. OPEN CHALLENGES AND FUTURE 

DIRECTIONS 

Despite significant advancements in Scalable 

Decentralized Multi-Agent Federated Reinforcement 

Learning (MA-FRL), several open challenges remain. 

Among these challenges, addressing non-stationarity and 

ensuring privacy-preserving scalability are particularly 

critical, as they directly impact learning stability and 

deployment feasibility. Addressing these challenges is 

essential for improving the scalability, efficiency, and 

robustness of decentralized MA-FRL in real-world 

applications. This section outlines key unresolved issues 

and potential future directions for research. 

A. Scalability of Communication-Efficient Strategies 

Communication overhead remains a major bottleneck in 

large-scale MA-FRL systems. While techniques such as 

gradient compression, selective agent communication, and 

asynchronous updates have been proposed, their 

effectiveness depends on network conditions and agent 

heterogeneity. A key research direction is the development 

of adaptive communication protocols that dynamically 

adjust message frequency, size, and relevance based on 

real-time network conditions and agent learning progress. 

Exploring hybrid strategies that combine local updates 

with decentralized gossip-based aggregation could further 

enhance scalability. 

B. Decentralized Aggregation in Dynamic Environments 

Most existing decentralized aggregation methods assume 

relatively stable agent participation. However, real-world 

applications, such as IoT networks and autonomous 

multiagent systems, involve dynamic environments where 

agents frequently join or leave the system. This introduces 

challenges related to fault tolerance, trust mechanisms, and 

adaptive aggregation. Future research should focus on 

designing resilient decentralized aggregation frameworks 

that incorporate self-healing mechanisms, agent dropout 

detection, and adaptive peer selection. Blockchain-based 

federated learning could provide tamper-resistant 

aggregation but requires further optimization to reduce its 

computational and storage overhead. 
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C. Handling Heterogeneity in Large-Scale MA-FRL 

Heterogeneity in computational resources, network 

bandwidth, and local datasets significantly impacts model 

convergence and fairness in decentralized learning. 

Furthermore, heterogeneity can exacerbate non-

stationarity, as agents with different learning speeds or 

local reward distributions may create inconsistent updates. 

Current approaches, such as adaptive weighting in 

federated averaging, are limited in handling extreme 

disparities among agents. Future work should explore 

federated reinforcement learning with hierarchical and 

cluster-based aggregation, where agents with similar 

capabilities are grouped before global synchronization. 

Additionally, optimizing personalized federated learning 

for multi-agent settings could help balance local adaptation 

with global model generalization. 

D. Stability in Non-Stationary Multi-Agent Systems 

Non-stationarity remains a critical challenge in MA-FRL, 

as agents continuously adapt their policies while 

interacting in a shared environment. Existing stabilization 

techniques, such as meta-learning and opponent modeling, 

require further refinement for decentralized settings. 

Research should explore adaptive policy stabilization 

mechanisms that leverage predictive modeling of agent 

behavior and dynamically adjust learning rates based on 

environmental changes. Another promising direction is the 

integration of curriculum learning, where agents 

progressively adapt to increasing levels of complexity, 

improving robustness in non-stationary environments. 

E.  Privacy-Preserving and Secure Decentralized 

Learning 

Ensuring privacy and security in decentralized MA-FRL 

remains an ongoing challenge, particularly when dealing 

with sensitive applications such as healthcare, finance, and 

industrial automation. However, privacy-preserving 

techniques often introduce communication overhead, 

making scalability even more difficult. While techniques 

like differential privacy and secure multiparty computation 

(SMPC) enhance data protection, they often impose 

additional computational costs. Future research should 

focus on lightweight privacy-reserving techniques, such as 

efficient secure aggregation and privacy-aware policy 

learning, which balance security and efficiency. 

Additionally, adversarial robustness mechanisms need 

further investigation to defend against poisoning attacks 

and model inversion threats in decentralized settings. 

F. Benchmarking and Standardized Evaluation Metrics 

A major limitation in current MA-FRL research is the lack 

of standardized benchmarking frameworks and evaluation 

metrics, hindering direct comparisons between different 

approaches. Most existing studies evaluate their methods 

on different testbeds, making it difficult to assess their 

scalability, convergence, and communication efficiency 

under uniform conditions. Establishing benchmark 

environments with standardized performance metrics 

would enable more systematic comparisons. Future work 

should also focus on developing real-world testbeds that 

simulate decentralized, large-scale multi-agent 

interactions, providing a more comprehensive evaluation 

of proposed methods. 

G. Towards Hybrid and Adaptive Federated 

Reinforcement Learning 

The future of MA-FRL lies in developing hybrid models 

that integrate multiple learning paradigms to enhance 

scalability and adaptability. Potential research areas 

include: 

• Hybrid Centralized-Decentralized Learning: 

Combining the benefits of centralized coordination 

with decentralized agent autonomy. One approach 

could involve using a subset of agents as super-agents 

responsible for periodic centralized aggregation while 

most agents continue decentralized learning. 

• Multi-Tier Federated Reinforcement Learning: 

Implementing hierarchical structures where agents 

communicate within localized sub-networks before 

contributing 

• to global updates. For example, clustering agents based 

on proximity or task similarity could improve local 

efficiency while reducing global communication 

overhead. 

• Adaptive Federated Reinforcement Learning: 

Designing self-adjusting mechanisms where agents 

dynamically switch between synchronous and 

asynchronous updates based on network congestion, 

task complexity, or learning phase. This would enable 

greater flexibility in large-scale, resource-constrained 

environments. 

H. Summary and Future Outlook 

Addressing these open challenges is essential for realizing 

the full potential of scalable decentralized MA-FRL. 

Future advancements should focus on: 

• Enhancing communication efficiency through adaptive 

and hybrid message-passing techniques. 

• Developing fault-tolerant decentralized aggregation 

strategies that are resilient to dynamic agent 

participation. 

• Improving policy stability in non-stationary 

environments with adaptive learning rate adjustments 

and predictive behavior modeling. 
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• Strengthening privacy-preserving methods that 

minimize computational overhead while maintaining 

security. 

• Establishing benchmarking frameworks for systematic 

evaluation and comparison of MA-FRL techniques. 

By addressing these challenges, future research can pave 

the way for scalable, secure, and adaptive decentralized 

learning systems applicable to real-world multiagent 

environments. 

 

VI. CONCLUSION 

Scalable Decentralized Multi-Agent Federated 

Reinforcement Learning (MA-FRL) represents a 

promising paradigm for enabling collaborative learning in 

multi-agent systems without relying on a central 

coordinator. This survey explored key challenges, existing 

approaches, comparative trade-offs, and future research 

directions in MA-FRL, focusing on communication 

efficiency, decentralized aggregation, heterogeneity, non-

stationarity, privacy, and benchmarking. 

Our analysis identified several major challenges that 

hinder the scalability of decentralized MA-FRL. 

Communication overhead, exacerbated by frequent inter-

agent synchronization, remains a primary bottleneck. 

While strategies such as gradient compression, selective 

agent communication, and asynchronous updates reduce 

communication costs, they introduce trade-offs related to 

convergence speed and stability. Decentralized 

aggregation further complicates scalability, requiring 

efficient mechanisms to aggregate local policies while 

ensuring robustness to network failures and agent 

dropouts. Additionally, heterogeneous agent capabilities 

and nonstationary environments impact learning stability, 

necessitating adaptive learning techniques for effective 

collaboration. 

Existing approaches provide partial solutions to these 

challenges, but limitations persist. Communication-

efficient strategies improve scalability but must be 

balanced with policy consistency. Decentralized 

aggregation methods such as peer-to-peer, blockchain-

assisted, and hierarchical learning enhance autonomy but 

introduce computational trade-offs. Privacy-preserving 

mechanisms, while crucial for secure decentralized 

learning, often impose additional communication and 

computational burdens, which can further hinder 

scalability. 

To address these challenges, we outlined several promising 

research directions. Adaptive communication protocols, 

integrating real-time network optimization, could 

dynamically regulate inter-agent communication, reducing 

redundancy without sacrificing performance. Resilient 

decentralized aggregation frameworks, incorporating self-

healing mechanisms and trust-aware peer selection, could 

improve fault tolerance in dynamic environments. 

Enhancing policy stability in nonstationary settings 

through predictive modeling, opponent-aware learning, 

and curriculum learning could lead to more robust multi-

agent collaboration. Further research is also needed in 

lightweight privacy-preserving techniques to balance 

security with efficiency, ensuring privacy without 

excessive computational overhead. Finally, establishing 

standardized benchmarking frameworks will be critical to 

enabling systematic comparisons of MA-FRL approaches 

across different application domains. 

The future of scalable MA-FRL lies in the development of 

hybrid and adaptive learning models, integrating 

techniques such as hybrid centralized-decentralized 

learning, multi-tier federated reinforcement learning, and 

adaptive federated reinforcement learning. These 

approaches can enable a balance between scalability, 

efficiency, and flexibility in large-scale distributed 

systems. 

By addressing these challenges, future research can unlock 

the full potential of scalable decentralized MA-FRL, 

enabling robust, secure, and adaptable multi-agent learning 

systems. As MA-FRL continues to evolve, 

interdisciplinary efforts across distributed systems, 

reinforcement learning, and secure computing will be 

necessary to bridge the gap between theoretical 

advancements and real-world deployment. The insights 

presented in this survey provide a strong foundation for 

future research in scalable decentralized MA-FRL, guiding 

the development of next-generation distributed learning 

systems for real-world multi-agent applications. 

 

REFERENCES 

[1] Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019). Federated 

machine learning: Concept and applications. ACM 

Transactions on Intelligent Systems and Technology 

(TIST), 10(2), 1-19. 

[2] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia 

Smith. Federated learning: Challenges, methods, and future 

directions. IEEE Signal Processing Magazine, 37(3):50–60, 

2020. 

[3] McMahan, B., Moore, E., Ramage, D., Hampson, S., & y 

Arcas, B. A. (2017, April). Communication-efficient 

learning of deep networks from decentralized data. 

In Artificial intelligence and statistics (pp. 1273-1282). 

PMLR. 

[4] Fu, H., Tang, H., Hao, J., Lei, Z., Chen, Y., & Fan, C. 

(2019). Deep multi-agent reinforcement learning with 

discrete-continuous hybrid action spaces. arXiv preprint 

arXiv:1903.04959. 

https://dx.doi.org/10.22161/eec.86.2


Myakala and Kamatala       Scalable Decentralized Multi-Agent Federated Reinforcement Learning: Challenges and Advances 

ISSN: 2456-2319 

https://dx.doi.org/10.22161/eec.86.2                                                                                                                                                16 

[5] Zhang, C., Xie, Y., Bai, H., Yu, B., Li, W., & Gao, Y. 

(2021). A survey on federated learning. Knowledge-Based 

Systems, 216, 106775. 

[6] Foerster, J., Assael, I. A., De Freitas, N., & Whiteson, S. 

(2016). Learning to communicate with deep multi-agent 

reinforcement learning. Advances in neural information 

processing systems, 29. 

[7] Aji, A. F., & Heafield, K. (2017). Sparse communication 

for distributed gradient descent. arXiv preprint 

arXiv:1704.05021. 

[8] Blot, M., Picard, D., Cord, M., & Thome, N. (2016). Gossip 

training for deep learning. arXiv preprint 

arXiv:1611.09726. 

[9] Xie, C., Koyejo, S., & Gupta, I. (2019). Asynchronous 

federated optimization. arXiv preprint arXiv:1903.03934. 

[10] Lalitha, A., Kilinc, O. C., Javidi, T., & Koushanfar, F. 

(2019). Peer-to-peer federated learning on graphs. arXiv 

preprint arXiv:1901.11173. 

[11] Xu, G., Zhou, Z., Dong, J., Zhang, L., & Song, X. (2023). 

A blockchain-based federated learning scheme for data 

sharing in industrial internet of things. IEEE Internet of 

Things Journal. 

[12] Briggs, C., Fan, Z., & Andras, P. (2020, July). Federated 

learning with hierarchical clustering of local updates to 

improve training on non-IID data. In 2020 international 

joint conference on neural networks (IJCNN) (pp. 1-9). 

IEEE. 

[13] Nedic, A., Olshevsky, A., Ozdaglar, A., & Tsitsiklis, J. N. 

(2008, December). Distributed subgradient methods and 

quantization effects. In 2008 47th IEEE conference on 

decision and control (pp. 4177-4184). IEEE. 

https://dx.doi.org/10.22161/eec.86.2

