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Abstract— Critical infrastructure supports essential services across energy, transportation, water 

management, and telecommunications sectors. The degradation or failure of assets in these sectors can have 

serious economic and safety consequences. Predictive maintenance (PdM), driven by artificial intelligence 

(AI), has emerged as a transformative approach to optimize maintenance activities and prevent failures. This 

paper reviews current AI-based PdM applications in critical infrastructure and presents a decision-making 

framework for evaluating when AI should be used. By addressing technical capabilities, economic impacts, 

and regulatory concerns, the framework helps guide decision-makers in adopting AI for PdM. 

Keywords— predictive maintenance, artificial intelligence, decision-making framework, critical 
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I. INTRODUCTION 

Critical infrastructure systems are vital for maintaining 

societal functions, from electricity distribution and 

transportation networks to water management and 

telecommunications. The failure of assets in these systems 

can lead to significant disruptions, jeopardizing safety and 

incurring substantial financial costs (Olejnik et al., 2020). 

Maintenance strategies have evolved from reactive and 

preventive approaches to more predictive and proactive 

ones, where data analytics and AI can play crucial roles 

(Zonta et al., 2020). Predictive maintenance (PdM) powered 

by AI offers an advanced method of optimizing asset 

lifespan, reducing downtime, and minimizing maintenance 

costs (Nguyen et al., 2022). 

This paper aims to provide a comprehensive review of AI-

driven PdM in critical infrastructure, presenting a decision-

making framework that assists organizations in determining 

when AI-based PdM should be implemented. This 

framework covers technical, economic, and regulatory 

aspects of AI adoption. 

 

II. BACKGROUND AND CONTEXT 

2.1 Predictive Maintenance 

Predictive maintenance refers to the practice of using real-

time data and historical trends to predict when equipment is 

likely to fail, allowing for timely intervention to avoid 

failures (Carvalho et al., 2019). Unlike preventive 

maintenance, which relies on fixed schedules, PdM 

optimizes maintenance efforts based on actual asset 

conditions, thus reducing unnecessary interventions 

(Jardine et al., 2006). PdM is especially relevant in critical 

infrastructure, where failures can have catastrophic effects 

on safety and service delivery (Ahmad & Kamaruddin, 

2012). 

2.2 AI and Machine Learning in Maintenance 

AI, particularly machine learning (ML) and deep learning 

(DL), is transforming PdM by improving the accuracy of 

failure predictions and providing more precise insights into 

asset health (Zhang et al., 2019). AI-based systems can 

process vast amounts of sensor data to identify subtle 

patterns that might indicate impending equipment failures, 
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which traditional rule-based systems may miss 

(Schwabacher & Goebel, 2007). 

Machine learning models, such as random forests and 

support vector machines, are widely used for PdM due to 

their ability to handle high-dimensional sensor data (Kusiak 

et al., 2013). Deep learning models, including neural 

networks, can capture more complex failure modes, making 

them effective for handling large datasets from critical 

infrastructure sectors like energy and water management 

(Ren et al., 2021). 

2.3 Critical Infrastructure Sectors 

Energy Sector: AI-based PdM is increasingly being 

adopted in the energy sector, where failures can disrupt 

power supply and create ripple effects across industries. AI 

models are used to predict failures in wind turbines, power 

transformers, and grid components (Zhou et al., 2022). For 

instance, research shows that AI-based PdM can extend the 

lifespan of wind turbines by 20%, reducing maintenance 

costs by up to 30% (Heidari et al., 2021). 

Transportation: Railways, airports, and road networks are 

deploying AI to monitor equipment health. AI models 

analyze vibration, temperature, and acoustic data to predict 

issues with trains, tracks, and airplanes, improving safety 

and reducing maintenance delays (Zio, 2013). A study on 

the European railway system found that AI-driven PdM 

increased reliability by 15-20% (Fumeo et al., 2015). 

Water Management: AI-based PdM in water 

infrastructure can prevent costly failures in pumps, 

pipelines, and treatment plants. Predicting leaks or pump 

malfunctions allows water utilities to avoid unplanned 

shutdowns, while ensuring continuous service and 

compliance with water quality standards (Van Thienen et 

al., 2020). Research has shown that PdM can reduce water 

utility operational costs by 25% (Na et al., 2020). 

Telecommunications: AI systems have become 

indispensable in telecommunications, where network 

reliability is paramount. PdM in this sector uses AI to 

predict failures in data transmission hardware, ensuring 

uninterrupted service and improving customer satisfaction 

(Zhao et al., 2020). 

 

III. CURRENT APPLICATIONS OF AI-BASED 

PREDICTIVE MAINTENANCE IN 

CRITICAL INFRASTRUCTURE 

3.1 Energy Sector 

AI-based PdM has seen wide adoption in the energy sector, 

particularly in renewable energy production. Wind turbines 

and solar panels, for example, generate massive streams of 

data that can be analyzed to predict faults (Zhou et al., 

2022). AI models, including deep learning and recurrent 

neural networks, are used to analyze real-time sensor data 

for early detection of failures in turbine components, such 

as bearings and blades (Ren et al., 2021). This has led to a 

significant reduction in maintenance costs and an increase 

in the operational efficiency of energy assets (Nguyen et al., 

2022). 

3.2 Transportation 

In the transportation sector, AI-driven PdM is used to ensure 

the safety and reliability of trains, airplanes, and other 

vehicles. For example, AI systems monitor the condition of 

railway tracks and train components using data from 

vibration and acoustic sensors (Zio, 2013). Studies in the 

European rail sector demonstrate that AI-based PdM can 

reduce unplanned maintenance by up to 20% (Fumeo et al., 

2015). 

3.3 Water Management 

In water management systems, AI-based PdM helps predict 

equipment failures in pumps, pipelines, and water treatment 

facilities (Van Thienen et al., 2020). Sensor data, including 

pressure and flow rate readings, are analyzed by AI models 

to detect anomalies that could indicate imminent failures, 

allowing for preemptive action (Na et al., 2020). This 

reduces downtime and prevents disruptions in water 

service. 

3.4 Telecommunications 

In telecommunications networks, AI-based PdM is used to 

predict failures in both hardware and software systems. By 

analyzing data from network components, AI can detect 

patterns that may indicate a risk of failure, allowing for 

preventive actions to ensure network uptime (Zhao et al., 

2020). Studies have found that AI-driven PdM can reduce 

downtime by 15% in telecommunications networks (Ren et 

al., 2021). 

IV. DECISION-MAKING FRAMEWORK FOR 

IMPLEMENTING AI IN PREDICTIVE 

MAINTENANCE 

Given the benefits of AI-driven PdM, it is essential for 

organizations to have a structured approach to evaluate 

when and how AI should be implemented. The proposed 

framework consists of four major stages: technical 

feasibility, economic analysis, regulatory and safety 

considerations, and pilot testing and scalability. The 

following framework is proposed in order to determine 

applicability of using AI applications in critical 

infrastructure. 

4.1 Technical Feasibility Assessment 
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The first step is to assess whether the necessary technical 

infrastructure is in place. This includes ensuring that the 

organization has: 

● Data Availability: Sufficient data must be 

available from operational sensors (Zhang et al., 

2019). 

● Data Quality: The quality of the data is critical, as 

poor data can lead to unreliable AI predictions 

(Heidari et al., 2021). 

● Computational Resources: The organization 

needs adequate computational power to process 

the data in real-time (Zhou et al., 2022). 

4.2 Economic Analysis 

An economic analysis is crucial to justify the adoption of 

AI-based PdM. This involves: 

● Upfront Costs: The costs of implementing AI, 

including hardware, software, and personnel 

training, must be considered (Na et al., 2020). 

● Operational Savings: AI-based PdM should 

provide long-term savings by reducing downtime 

and optimizing maintenance schedules (Carvalho 

et al., 2019). 

● ROI Calculation: A thorough cost-benefit 

analysis should calculate the return on investment 

over the asset lifecycle (Schwabacher & Goebel, 

2007). 

4.3 Regulatory and Safety Considerations 

AI-based PdM must comply with the relevant industry 

regulations and safety standards. This includes ensuring: 

● Compliance with Regulatory Standards: AI 

systems should meet legal requirements for data 

security and operational safety (Zhao et al., 2020). 

● Explainability of AI Models: AI systems should 

be transparent, allowing operators to understand 

and trust their predictions (Zhou et al., 2022). 

4.4 Pilot Testing and Scalability 

Pilot testing allows for the evaluation of AI-based PdM in a 

limited scope before full-scale deployment: 

● Pilot Program Design: Select a subset of assets or 

geographical area for pilot testing (Kusiak et al., 

2013). 

● Scalability: Ensure that the system can scale 

across the entire network without performance 

degradation (Van Thienen et al., 2020). 

 

V. CHALLENGES AND FUTURE 

DIRECTIONS 

While AI-based PdM holds promise, several challenges 

remain. Data quality and availability are paramount to 

success, as poor data can undermine the accuracy of 

predictions (Ren et al., 2021). Additionally, the complexity 

of AI models makes it difficult for operators to interpret the 

results, leading to a reluctance to adopt these systems fully 

(Zhang et al., 2019). Future research will focus on 

improving explainability, integrating reinforcement 

learning, and creating hybrid models that combine ML with 

physics-based approaches (Heidari et al., 2021). 

 

VI. CONCLUSION 

AI-based PdM is transforming maintenance strategies in 

critical infrastructure by providing accurate failure 

predictions and optimizing maintenance schedules. 

However, its adoption requires careful evaluation through a 

structured decision-making framework. This framework, 

covering technical feasibility, economic viability, 

regulatory considerations, and scalability, provides 

decision-makers with a systematic approach to deploying 

AI for PdM. As AI technology advances, its role in 

improving the reliability and efficiency of critical 

infrastructure will continue to expand. 
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