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Abstract— Irreversible thermal cycling growth (or ratchet growth) of insensitive explosive formulations has 

been known for years. Traditionally it’s attributed to material texture and to anisotropic thermal expansion. 

Although this understanding has been accepted for a long time, we’re not aware of any model on the macroscale 

that connects these material properties to ratchet growth behavior. Thompson et al. [1] have observed that 

they get growth not just from thermal cycling, but also from a long hold time of the material sample at high 

temperature, and that such growth resembles creep response. Following their findings we propose here a 

predictive model for ratchet growth on the macroscale, where we assume that when temperature is increased, 

growth comes about by porosity (or volume) creep. As is well known, PBXs are prepared by die or isostatic 

pressing, and at the end of such pressing the material is left at porosity of about 2%, and with substantial 

residual or internal stress fluctuations in self-equilibrium. We model ratchet growth by assuming that: 1) 

increasing temperature decreases strength in tension (negative pressure), causing the porosity in the part of 

the material (in a control volume) that is in tension to creep (slowly increase); and 2) increasing temperature 

increases the internal pressure/tension fluctuations because of thermal expansion anisotropy, thereby 

enhancing the rate of porosity creep and ratchet growth. We write down equations for porosity creep and the 

resulting ratchet growth, and we demonstrate that our modeled ratchet growth results are similar to test data. 

We do not calibrate the free parameters of our model to reproduce specific data, as we do not own such data. 
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I. INTRODUCTION 

The phenomenon of growth (porosity and volume 

increase) as a result of thermal cycling of insensitive explosive 

formulations has been known for more than 30 years. Ratchet 

growth response increases sensitivity and causes safety 

concerns, and this is why it has been thoroughly studied [1-6]. 

Since the first studies of ratchet growth it has been assumed 

that it is related to material texture and anisotropic thermal 

expansion. But this assumption has not been verified, and 

we’re not aware that any mechanism or model has been 

proposed to connect material anisotropy to ratchet growth data 

directly. 

Progress towards understanding the mechanism of ratchet 

growth was made by observations of Thompson et al. in [1]. 

They performed tests in which they extended the hold time at 

high temperature. In these tests they observed that: 1) volume 

(or porosity) grows even at a constant high temperature, and 

not just during thermal cycling; and 2) the volume growth 

pattern is similar to what one gets from creep tests. From these 

results they concluded that ratchet growth is a creep-like 

phenomenon. In addition, we’ve wondered if ratchet growth 

is specific only to insensitive explosive formulations. 

Searching the literature extensively, we haven’t found until 

recently any study looking for ratchet growth of any other 

explosive formulation. But recently we bumped upon such a 

report from people working on the development of insensitive 

munitions (IM) [7]. As IM contain insensitive explosive 

formulations, it makes sense that their developers would be 

concerned with ratchet growth. Accordingly, it turns out that 

thermal cycling is a standard test for IM development. In [7] 

they report the results of their standard thermal cycling test on 

various formulations of the explosives: RDX, HMX, NQ, AP, 

and DNAN, for which they find substantial amounts of ratchet 

growth (between 3 and 15%). Their goal is to develop 

formulations with less than 1% ratchet growth in their 

standard test.  
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In what follows we propose a macroscale model for ratchet 

growth, based on the assumption that growth at high 

temperature comes about by porosity (or volume) creep. 

 

II. MODEL DESCRIPTION 

Plastic bonded explosives (PBX) are manufactured by die 

or isostatic pressing of small explosive grains covered with a 

thin layer of plastic binder. The resulting material is 

inhomogeneous on the mesoscale with about 2% porosity. For 

isostatic pressing the pressure is about 200MPa at a 

temperature of about 1000C, far from the pressure needed for 

full pore closure. 

Accordingly we assume that after pressure removal and 

cooling to room temperature, the pressed material contains 

residual stresses (mainly pressure) in self-equilibrium. We’re 

not aware that this has been quantitatively studied and 

documented. But it’s not unreasonable to assume that because 

of the inhomogeneity of the material on the mesoscale (grain 

scale), such self-equilibrated residual stresses would form. 

With nowadays modeling capabilities such residual stresses 

can be computationally predicted with satisfactory accuracy. 

For simplicity we neglect here the shear residual stresses on 

the macroscale, and concentrate on the isotropic (pressure) 

residual stresses. Because of the low shear strength of the 

binder, the overall shear strength is quite small, and we 

assume that macroscopic residual shear stresses on the 

macroscale can be neglected compared to the macroscopic 

residual isotropic stresses. This assumption can (and should) 

be checked by simulation of the pressing process on the 

mesoscale. Again for simplicity, we further assume that in 

every macroscopic control volume (or macroscopic 

computational cell), half the mass is in compression with 

pressure Pc, and the other half is in tension (negative pressure) 

with pressure Pt. As the residual stresses are in self-

equilibrium, we have: Pc+Pt=0. We also assume that the 

material has porosity (or volume) strength on the macroscale, 

which is different for compression and tension. We denote 

these strength values by Zmc and Zmt for compression and 

tension, respectively. Volume strength on the macroscale 

results from shear strength on the mesoscale, and it is 

intuitively obvious that shear strength on the mesoscale in 

tension would be much smaller that shear strength on the 

mesoscale in compression. This is because plastic flow on the 

mesoscale in compression requires fracture and flow of the 

grains, while plastic flow on the mesoscale in tension requires 

mainly tensile and shear deformation of the binder and grain 

separation. We therefore assume that Zmc>>Zmt, which can be 

verified and quantified as well by computer simulations on the 

mesoscale. 

From these assumptions it would follow that porosity 

creep (and therefore also ratchet growth) may result from 

temperature increase, because porosity (or volume) strength in 

tension on the macroscale decreases as temperature increases. 

Accordingly, porosity (or volume) creep may result from 

temperature increase by the following steps: 1) initially (after 

a long stay at a constant temperature, say room temperature), 

the amount of tension is equal to the strength in tension, 

Pmt=Zmt; 2) raising the temperature, Zmt decreases and porosity 

(or volume) creep begins. As a result, porosity increases, 

volume increases (density decreases), and tension decreases. 

At the same time pressure (in absolute value) also decreases, 

as pressure and tension are self-equilibrated; 3) when 

temperature goes back to its initial value (thermal cycling), Zmt 

increases back to its initial value, and porosity creep stops, but 

Pmt is now lower than initially; 4) for each additional thermal 

cycle, creep rate (and also volume growth rate) decreases 

according to the reduced distance between Pmt and Zmt, and it 

finally decreases asymptotically to zero. 

With this sequence of events we don’t take into account 

the possible increase of Pmt with temperature as a result of 

anisotropic thermal expansion. We imagine that such an 

increase would happen irreversibly only on the first thermal 

cycle. If such an increase of Pmt does not happen, creep rate 

would stop before returning back to the initial temperature, 

and would be zero during the hold time at the initial 

temperature. Otherwise we would get a non-zero creep rate 

when holding at the initial temperature for some cycles. In the 

computed examples presented later we don’t take into account 

the feature of anisotropic thermal expansion. In the next 

section we write down the equations for porosity (or volume) 

creep. 

 

III. POROSITY (OR VOLUME) CREEP 

EQUATIONS 

On the macroscale the material includes the matrix (m) 

(explosive grains and binder) and the voids (v). Specific 

volume V is given by: 

  m v m vV V V V V 1 for V V      

 (1) 
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where =porosity. Time differentiating the first equation of 

(1) we get: 

  

 

m v m m m

m m

V V V V V V V V V V

1
1

     


            



 (2) 

where volume strain () and pressure (see later) are positive in 

tension. As explained above, we assume that for each 

computational cell half the cell is in tension and the other half 

in compression, and that the two halves differ in terms of 

porosity and specific volume. We index variables in the 

tension half by t and variables in the compression half by c. 

The last equation of (2) in the two halves is then: 

t c
t mt c mc

t c1 1

 
       

 
 (3) 

As explained above, we assume that Zmc (see above) is quite 

high and the half in compression does not creep, so that
c 0 

. We also assume that Maxwell’s mechanical model holds here 

and the two halves deform at the same rate, so that: 

c t     . It therefore follows from Eq. (3) that: 

t
mc mt

t1


   


 (4) 

As we deal here with slow deformation (caused by slow 

thermal changes), we may convert volume strain to pressure 

using the isothermal bulk modulus K. Multiplying Eq. (4) by 

K we get: 

t
mc mt

t

P P K
1


 


 (5) 

Applying Herrmann’s assumption [8, 9] for porous materials: 

P=Pm(1-) we get: 

 

   

   

 

c mc c c c mc

t mt t t t mt mt t

c t t
mt

c t t

P P 1 P 1 P

P P 1 P 1 P P

P P
K P

1 1 1

    

      


   

  

 (6) 

And using the self-equilibrium equation c tP P 0   we 

finally get: 

t t
t

c t t t

P1 1
p K

1 1 1 1

    
      

      
 (7) 

Using our overstress approach for the rate of change of 

porosity [8], we assume that it increases with the overstress 

Pmt-Zmt, and for the lack of any specific knowledge about this 

dependence, we assume for it a linear relation: 

 t mt mt mt mt

t mt mt

A P Z for P Z

0 for P Z

   

  
 (8) 

where A is a material parameter to be determined from tests. 

It follows from Eq. (8) that the key to porosity (or volume) 

creep (and therefore to ratchet growth) is the decrease of 

Zmt with temperature.  

We assume for this decrease the following linear relation: 

mt0
mt melt

melt 0

mt mt melt

Z
Z T for T T

T T

Z Z 0 for T T

  


  

 (9) 

where T0=room temperature, and Zmt0=volume strength in 

tension at T0. We define growth (=g) as g=-0. Assuming that 

0=0 and using Eqs. (3) and (6) we get: 

 

t mt t
mt

t t

t t
mt t 2

t t

P
g

1 K 1

P
P P

1 1

 
    

 


 

 

 (10) 

It can be seen from the above equations that we get a system 

of 5 time dependent ODEs with the following unknowns: 

temperature T, tensile-half porosity t, tensile-half volume 

strength Zmt, tensile-half isotropic tensile stress Pt and growth 

or volume strain increase g. We integrate this system of 5 

ODEs with a standard Runge-Kutta 4th order solver with 

constant time steps t. We use t=1sec. 

 

IV. COMPUTED EXAMPLES 

We use the following parameters: bulk modulus 

K=3500MPa, initial volume strength Zm0=100MPa (of the 
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order of isostatic pressing pressure), initial porosity 0=2%, 

porosity rate of increase coefficient A=1.e-7/sec/MPa, initial 

temperature 230C, [1], final temperature 1130C, as in [1], ramp 

temperature increase and decrease time 1.5 hours, and hold 

time at low and high temperature 1 hour. 

In Fig. 1 we show results for a run with a single thermal 

cycle. We see (in red) the outline of the thermal cycle and (in 

blue) the growth (volume strain increase) with time. We see 

that growth increases until sometime after the start of 

temperature drop, and then it stays unchanged as Zmt goes 

above Pmt. We also see that the maximum growth is about 

0.5%, similar to what they got in [1]. 

 

Fig.1: Growth from a run with a single thermal cycle. 

In Fig. 2 we show results from a run in which we hold the high 

temperature for a long time. We do that by increasing the high 

temperature hold time to 10 hours. We see from Fig. 2 that 

when the hold time at the high temperature is high, growth 

continues to about 0.7%, as suggested in [1]. Next we check 

the influence of the coefficient of porosity increase rate A 

(Fig. 3) and of the isothermal bulk modulus K (Fig. 4). Both 

are for a single thermal cycle as in Fig. 1. Finally we show in 

Fig. 5 the results of a run of 15 cycles. For this run we changed 

the hold time at the low temperature to 10 minutes, as in the 

tests reported in [2]. We see in Fig. 5 that as before, the full 

growth history has flat sections at and near the low 

temperature. Following [2] we also show growth values at the 

end of each of the thermal cycles (blue dots). A curve through 

these dots seems continuous, as in [2]. 

 

            Fig.2: Growth from a run with a long hold time at the 

high temperature. 

 

Fig.3: Influence of the coefficient A on growth for a single 

thermal cycle as in Fig. 1. 

 

Fig.4: Influence of the isothermal bulk modulus K on growth 

for a single thermal cycle as in Fig. 1. 
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Fig.5: Ratchet growth history for 15 thermal cycles. Red: 

continuous growth history.  

Blue: growth at the end of each cycle. 

 

V. SUMMARY 

Early on it was suggested that ratchet growth results from 

texture of the explosive crystals and from anisotropy of its 

thermal expansion. But as far as we know, this suggestion has 

not led to a model that can predict ratchet growth response on 

the macroscale. In [1] they observed that: 1) growth occurs not 

just from thermal cycling, but also for a long hold time at a 

high temperature; and 2) the overall growth behavior is creep-

like. Here we build on these observations and develop a 

predictive ratchet growth model on the macroscale. We 

assume that: 1) after pressing, the material has residual 

stresses on the mesoscale that are self-equilibrated on the 

macroscale; 2) shear stresses on the macroscale can be 

neglected, and what causes growth is porosity (or volume) 

creep (slow porosity increase) in the tension part of the 

isotropic stress; and 3) as temperature is raised, the volume 

strength (resistance to porosity creep) on the tension part 

decreases, and the tension part creeps Based on these 

assumptions we write down equations for ratchet growth on 

the macroscale. The equations include only a single parameter 

to be calibrated from tests, which is the coefficient of the 

overstress porosity growth rate equation. We show results of 

ratchet growth computations which look similar enough to test 

data. 
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