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Abstract— An outlier is a data value that is an unusually 

small or large, or that deviates from the pattern of the rest of 

the data. Outliers are usually removed from the data set 

before fitting a forecasting model, or not removed but the 

forecasting model adjusted in presence of outliers. There 

are four types of OUTLIERS are as follows: Additive 

outlier (AO), Innovational outlier (IO), Level shift (LS) and 

Temporary change (TC). There is more than one method for 

the detection of outlier; the study considers the detection of 

outlier in two cases: first, at the time when the parameters 

are known. Second, when the parameters are unknown. 

There are several reasons for outlier detection and 

adjustment in time series analysis and forecasting which are 

mentioned in this study. The study has used the volume of 

water inflow in the reservoir of Dokan dam in Sulaymaniah 

city as a time series for the purpose of the study. The study 

came to conclude that throughout the res earch, the 

following conclusions: first, every time increasing the 

critical value, the value of residual standard error (with 

outlier adjustment) increased. Second, every time increasing 

the critical value, the number of outlier values decreased. 

Third, in the case of presence of outliers the forecasts with 

adjustment of outliers better than the forecas ts without 

adjusting outliers. 

Keywords— ARMA model, Innovational Outlier, 

Temporary Change, Time Series. 

 

I. INTRODUCTION 

The study of outliers is not a new phenomenon. It has in 

fact a long history dating back to the earliest statistical 

analysis. Outlier methods have developed hand in hand with 

other statistical methods. Unfortunately, in time series 

analysis this expansion of outlier methods has not been as 

rapid and widespread. One reason for this must be that 

methods of time series outliers were first considered 

explicitly. However, since then the amount of papers 

dealing with the issue has grown steadily (Rousseeuw & 

Bossche, 2018). 

Outliers and structure changes are commonly encountered 

in time series data analysis. The presence of those 

extraordinary events could easily mislead the conventional 

time series analysis procedure resulting in erroneous 

conclusions. The impact of those events is often 

overlooked, however, for the lack of simple yet useful 

methods available to deal with the dynamic behaviour of 

those events in the underlying series. The primary goal of 

this paper, therefore, is to consider unified methods for 

detecting and handling outliers and s tructure changes in a 

univariate time series. The outliers treated are the additive 

outlier (AO) and the innovational outlier. The structure 

changes allowed for are level shift (LS) and variance 

change (VC). Level shift is further classified as permanent 

level change (LC) and transient level change (TC) 

(Rousseeuw, et al. 2019). 

The literature study forms the first stage of a research 

project aiming to establish the applicability of time series 

and other techniques in estimating missing values and 

outlier detection/replacement in a variety of transport data. 

Missing data and outliers can occur for a variety of reasons, 

for example the breakdown of automatic counters (Cabrieto, 

et al. 2017). Initial enquiries suggest that methods for 

patching such data can be crude. Local authorities are to be 

approached individually using a short questionnaire enquiry 

form to attempt to ascertain their current practices. Having 

reviewed current practices, the project aims to transfer 

recently developed methods for dealing with outliers in 

general time series into a transport context. It is anticipated 

that comparisons between possible methods could highlight 

an alternative and more analytical approach to current 

practices (Staal, et al. 2019). 

Several approaches have been cons idered in the literature 

for handling outliers in a time series. Abraham and Box 

(1979) used a Bayesian method, Martin and Yohai (1986) 

treated outliers as contamination generated from a given 

probability distribution, and Fox (1972) proposed two 

parametric models for studying outliers. Chang (1982) 

https://dx.doi.org/10.22161/ijcmp.3.3.2
http://www.aipublications.com/ijcmp/


International journal of Chemistry, Mathematics and Physics (IJCMP)                                               [Vol-3, Issue-3, May-Jun, 2019] 

https://dx.doi.org/10.22161/ijcmp.3.3.2                                                                                                                             ISSN: 2456-866X 

http://www.aipublications.com/ijcmp/                                                                                                                                           Page | 57 

adopted Fox’s models and proposed an iterative procedure 

to detect multiple outliers. In recent years, this iterative 

procedure has been widely used with encouraging results 

(Liu, et al. 2018). The methods mentioned above may be 

regarded as batch-type procedures for detecting outliers, 

because the full data set is used in detecting the existence of 

outliers. On the other hand, Harrison and Stevens (1976), 

Smith and West (1983), West, Harrison and Migon (1985) 

and West (1986) have considered sequential detecting 

methods for handling outliers. These sequential methods 

assume probabilistic models forbyDenby and Martin 

(1979). This approach is summarized in Martin and Yohai 

(1985). However, the study of Chang and Tiao (1983) 

shows that Denby and Martin’s robust procedure is not 

powerful in handling innovational outliers. (Note that the 

effect of a single I0 on estimation is usually negligible 

provided that the I0 is not close to the end of the 

observational period. The effect of multiple IOs, however, 

could be serious. There is no comparison available between 

the batch-type and the sequential procedures in handling 

outliers. The probabilistic treatment has its appeal but may 

not be easy to implement as it requires prior information of 

the underlying model to begin with. Since level shifts and 

variance changes are also considered, the approach of 

Chang and Tiao (1983) and Tsay (1986a) is adopted and 

generalized in this study (Arumugam & Saranya, 2018). 

Outliers can take several forms in time series. There are 

additive and innovational outliers. An additive outlier 

affects a single observation, which is smaller or larger in 

value than expected. In contrast an innovational outlier 

affects several observations. Three other types of outliers 

can be defined, namely level shifts, transient changes and 

variance changes (Aminikhanghahi& Cook, 2017). A level 

shift simply changes the level or mean of the series by a 

certain magnitude from a certain observation onwards. A 

transient change is a generalization of the additive outlier 

and level shift in the sense that it causes an initial impact 

like an additive outlier, but the effect is passed on to the 

observations that come after it. A variance change simply 

changes the variance of the observed data by a certain 

magnitude (Wang & Mao, 2018). 

Outliers have some effects on the forecasts from ARMA 

models, and especially outliers near the beginning of the 

forecast period can have serious consequences. Point 

forecasts may suffer only a little from additive outliers, but 

the prediction intervals can become severely misleading, as 

outliers can inflate the estimated variance of the series. 

Level shifts and transient changes can have more serious 

effects also on point forecasts even when outliers are not 

close to the forecast region. Attempts have been made to 

construct forecasting intervals in the presence of outliers 

(Liu, et al. 2018). 

 

II. LITERATURE REVIEW  

Types of outliers in a time series  

Temporary Change (TC): 

An additive outlier (AO) and a level shift (LS) represent 

two distinct patterns in which an event affects a series. For 

LS, the level of the underlying process is affected for all 

future time, while an AO affects the series for only one time 

period. It is useful to consider an event that has some initial 

impacts on a series, and then the impact eventually 

disappears (Hermosilla, et al. 2015). A temporary (or 

transient change) (TC) is an event having such an initial 

impact and whose effect decays exponentially according to 

some dampening factor, say δ. We can represent the 

observed series as: 

 

 

Innovational Outlier (IO):  

An innovational outlier is characterized by an initial impact 

with effects lingering over subsequent observations. The 

influence of the outliers may increase as time proceeds. 

We consider integer-valued autoregressive models of order 

one contaminated with innovational outliers. Assuming that 

the time points of the outliers are known but their sizes are 

unknown, we prove that Conditional Least Squares (CLS) 

estimators of the offspring and innovation means are 

strongly consistent. In contrast, CLS estimators of the 

outliers' sizes are not strongly consistent. We also prove that 

the joint CLS estimator of the offspring and innovation 

means is asymptotically normal. Conditionally on the 

values of the process at time points preceding the outliers' 

occurrences, the joint CLS estimator of the sizes of the 

outliers is asymptotically normal (Capozzoli, et al. 2015). 

It is the type of outliers that affects the subsequent 

observations starting from its position, in other words that 

occurs as a result of natural randomness. The model, 

defined as “randomness outlier” in the literature, is shown 

as follows: 

 
Thus, the AO case may be called a gross error model, since 

only the level of the T’th observation is affected. On the 
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other hand, an IO represents an extraordinary shock at time 

point T influencing,  ,... T T1 z z through the dynamic 

system described by (B) (B)/(B) (Chang, Tiao and 

Chen, 1988). 

Unlike an additive outlier, an innovational outlier (IO) is an 

event whose effect is propagated according to the ARIMA 

model of the process. In this manner, an IO affects all 

values observed after its occurrence. In practice, an IO often 

represents the onset of an external cause. The model for the 

observed series can be expressed as  

 
The above model can also be written as  

 
As a result, an AO only affects one observation, T Y , while 

an IO affects all values of T Y for t ≥ T  according to the ψ-

weights  {where ψ(B)= () () B B  } of the model. The 

terminology IO arises because of the representation given in 

(2.6) as ta is also referred to as innovation. The 

contaminated series t Y is identical  to the original series t Z 

until t=T ; then t Y , shift up (if  I W >0) or down (if  I W < 

0 ) by I W  units at t=T; after t=T ,this effect fades 

exponentially at a rate determined by the decay coefficient  

φ(B). 

For t ≥ T,  t Y is higher than t Z  by tT  IW  units .The 

effect of the IO fades until eventually the contaminated 

series t Y is indistinguishable from the original series t Z . 

Level Shift (LS):  

   A level shift (LS) (sometime known as a level change LC) 

is an event that affects a series at a given time, and whose 

effect becomes permanent. A level shift could reflect the 

change of a process mechanism, the change in a recording 

device, or a change in the definition of the variable itself. 

The model for the series the study observes may be 

represented by  

 
The above representation can also be written as  

 

 
 

 

Auto Regressive Moving Average 

 

An ARMA model, or Autoregressive Moving Average 

model, is used to describe weakly stationary stochastic time 

series in terms of two polynomials. The first of these 

polynomials is for autoregression, the second for the 

moving average (Chen, et al. 2017). The autoregressive-

moving average (ARMA) process is the basic model for 

analyzing a stationary time series. First, though, stationarity 

has to be defined formally in terms of the behavior of the 

autocorrelation function (ACF) through World’s 

decomposition. Several simple cases of the ARMA 

model are then introduced and analyzed, with the partial 

autocorrelation function (PACF) also being defined, before 

the general model is introduced. ARMA modelbuilding and 

estimation may then be developed, and this is done via a 

sequence of examples designed to demonstrate some of the 

intricacies of selecting an appropriate model to explain the 

evolution of an observed time series (Johansen & Nielsen, 

2016). 

Often this model is referred to as the ARMA(p,q) model; 

where: 

 p is the order of the autoregressive polynomial, 

 q is the order of the moving average polynomial. 

The equation is given by: 

 
Where: 

 φ = the autoregressive model’s parameters, 

 θ = the moving average model’s parameters. 

 c = a constant, 

 ε = error terms (white noise). 

 

As we have remarked, dependence is very common in time 

series observations. To model this time series dependence, 

we start with univariate ARMA models. To motivate the 

model, basically we can track two lines of thinking. First, 

for a series xt , we can model that the level of its current 

observations depends on the level of its lagged observations 

(Li, et al. 2015). For example, if we observe a high GDP 

realization this quarter, we would expect that the GDP in 

the next few quarters are good as well. This way of thinking 

can be represented by an AR model. The AR(1) 

(autoregressive of order one) can be written as: 

 

We introduced the ARMA model that may be written as: 
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The model of equation above can be directly extended to 

include differencing operators to induce stationarity and to 

encompass seasonal terms (as multiplicative AR or MA 

operators). To facilitate our understanding of outliers, we 

will concentrate our discussions to nonseasonal models. 

Moreover, we will assume C=0 so that we may re-write as: 

 

In the above model, t z represents a series that is not 

contaminated with outliers. We will use t Y to represent the 

values observed for t z in the presence of an outlier. As we 

will see, our representation for an outlier will take the form 

of the intervention model. The AR operator (and the 

differencing operator if exists) is placed in the denominator 

of the ARIMA model. Therefore the effect of an outlier is 

relative to t Y , rather than relative to the AR filtered t Y 

(Reiche, et al. 2015).  

We now define and illustrate the types of outliers. These are 

additive outlier (AO), innovational outlier (IO), level shift 

(LS), and temporary (or transient) change (TC), and to 

illustrate the effect of each type of outlier, and how it 

affects the values of a time series, we assume that we have 

AR(1), then the following simple AR process is employed: 

 
(2-1-1) Additive Outlier (AO)  

An additive outlier (AO) is an event that affects a series for 

one time period only. One illustration of an AO is a 

recording error. For this reason, an additive outlier is 

sometimes called a gross error. If we assume that an outlier 

occurs at time t=T, we can represent the series we observe 

by the model   

 
where () T tp is a pulse function (that is, assumes the value 

1 when t=T and is 0 otherwise). The value A W represents 

the amount of deviation from the “true” value of T Z. Such 

additive outlier (AO's) affect observations in isolation due 

to some nonrepetitive events and may occur as a result of 

measurement errors of economic, political and financial 

events such as oil shocks, wars, financial crashes and 

changes in policy regimes. 

 

Outliers detection in time series  

1-Likelihood ratio tests: 

In practice we don’t know if an AO, LS or IO event has 

occurred at any time t. We use a hypo study testing 

procedure to decide if such events have occurred.  

 

 

 
Let HAdenote the alternate hypostudy, A W ≠ 0; Let HS 

denote the alternate, S W ≠0; and let HI denote the 

alternate, I W ≠ 0. Tests may be performed with the 

following likelihood ratio statistical (denoted as L):    

 

 

 

we are just dividing each estimated * w coefficient by its 

corresponding standard error [the square root of the 

variance] given by: 

 

 

 
Under the null hypostudy H0, and assuming that both time i 

and the parameters of the ARIMA model, the statistics LA, 

LS, and LIare normally distribution with mean zero and 

variance. In practice, we don’t know the parameters of the 

ARIMA model in 

 
Methods of Outlier Detection 

Outlier detection when ARMA parameters are 
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It is natural to consider the residuals of a fitted model for 

use in detecting outliers in a time series, since most 

diagnostic checks of a model are based on residuals. 

However, outliers in a time series can affect both the model 

we may identify for the series as well as the parameter 

estimates of the identified model. As a result, it is unclear 

how useful the residuals may be for outlier detection in 

certain situations. To better understand how a single outlier 

manifests itself in the residual series, consider the filtered 

series (Zhang, et al. 2016). 

 
where () B  is the polynomial operator in the π-weights of 

the ARIMA model. The weights in π(B) may be obtained 

by equating coefficients in the backshift operator in an 

expression involving π(B) and the polynomial operators of 

the model. In the case of the non-seasonal stationary model. 

 

The values of  t e become the residuals of the fitted model if 

the πweights are computed from the estimated parameters 

of the ARIMA model rather than from the known 

parameters of the “true” ARIMA model. 

We may be able to use the analytic representation of t e to 

test for the effect of an outlier. If only one outlier occurs in 

a time series, then a least squares estimate for the effect of 

the outlier at time t=T , ˆi W (i=1,2,3,4), and the statistic 

that may be used for testing its significance can be easily 

derived. An adjusted series (i.e., one with the outlier effect 

removed) can also be obtained. However, some problems 

remain since:  

1. In the event there is an outlier, we do not know its 

type;  

2. We do not know whether an outlier occurs, and if 

it occurs, the time of its occurrence;  

3. There may be more than one outlier present in the 

series; and  

4. We do not know precisely what the “true” 

underlying model is, nor are we sure of the 

accuracy of the estimates of a correct model.       

Procedures to account for (1) - (3) above have been 

developed during the past few years. Most of these outlier 

detection procedures are based on the residuals from fitted 

models. In this way, we can diagnostically check a fitted 

model for the presence of outliers.  

An iterative detection procedure 

Suppose there is unknown number of AO, LS and IO events 

in a time series t Y , occurring at unknown times  t= 12 , 

ii,… . A detection procedure is as follows:   

1. Identify and estimate an ARIMA model (or DR 

model) forecast t Y  assuming that no AO, LS, or 

IO events are present.  

2. Compute the model residuals ( ˆte ) and estimate 2 

a  as:      

 

where m  is the number of residuals available (m=n- 1 n and   

1n = p+ S P + d+ S D ) 

3. Compute the likelihood ratios. Set  0,tˆ L equal to 

the largest of these statistics; that is, 0,t ˆ L = max 

{ A,t ˆ L ,s,tˆ L , I,t ˆ L }for the  m  time periods  

t=1+ 1 n , 2+ 1 n ,….,n. 4. Find ˆ L =max { 0,t ˆ L 

}. Compare ˆ L with a predetermined critical    

value dc (discussed later). If ˆ L ≤ d c , stop the 

procedure. If  ˆ L > d c ,then a possible  AO, LS, or 

IO is detected. At the time (t = i), type (AO, LS, or 

IO), and estimated w coefficient of the identified 

possible event are those associated with ˆ L . 

4. Find ˆ L =max { 0,t ˆ L }. Compare ˆ L with a 

predetermined critical    value dc (discussed later). 

If ˆ L ≤ d c , stop the procedure. If  ˆ L > d c ,then a 

possible  AO, LS, or IO is detected. At the time (t 

= i), type (AO, LS, or IO), and estimated w 

coefficient of the identified possible event are 

those associated with ˆ L . 

a- If a possible LS is detected, its size is estimated by ˆ SW 

in  * SW = s k () C F i e = s k remove this  LS effect from 

the residual series by replacing    each ˆ te with  ˆ te - ˆS W 

() ˆ t BXc for  t ≥ i. Reestimate 2 a  using the new  ˆ te 

series; use this new estimate to recomputed S,t ˆ L. 

c- If a possible IO is detected, its effect is estimated by ˆI W 

according to * IW =   Remove this   IO effect from the 

residual series by replacing ˆ teattime   t = i with   ˆ te - ˆI W 

=0. Re estimate  2 a using the new ˆ te series; use this new 

estimate to recompute I,t ˆ L. 

5. Suppose T possible  AO,LS or IO effects are found at 

times i1,i2,…., Ti . Treat these times as known and estimate 

the w coefficients for each effect simultaneously within a 

DR model. For example, suppose we find T= 3 effects, with 

a possible AO detected at time t = i3 . Then we estimate the 

model 
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Where 1,t X =1 at t = i1 and  1,t X =0  otherwise; 2,t X =0 

for  t <i2  and  2,tX =1 for t ≥ i2 ; 3,t X =1 at t=i3  and  3,t 

X =0 otherwise. The model may also call for a constant 

term. Diagnostic checking may lead to us to modify. 

 

III. METHODS AND FINDINGS 

Collection of data 

 The researcher gathered data for the application of a 

research from the Dokan dam in Sulaimaniah city, where 

the data are the volume of water inputting the reservoir of  

Dokan dam(daily rates cubic meters) late 2018 and early 

2019,the very large volume of data has been converted to 

monthly averages (cubic meters) time series. 

Building ARIMA model 

Model identification 

A time series plot of volume, the study is certain that the 

series does not have a fixed mean level and not stable in the 

variance. First to stabling the variance, we transform the 

data by using the natural logarithmic. We will store the 

transformed data under the name Lvolume, by using SCA 

paragraph.A time series plot of Lvolume, furthermore the 

new series still exhibits a trend and seasonality, but we 

seem to have stabilized the variability over the length of the 

series ( as seen in figure 1). 

 
Fig.1-Plot of water volume series of Dokan dam 

 

Fig.2-Plot of log of water volume (Lvolume) ofDokan dam 

 

We expect that the Lvolume is not stationary. This is 

confirmed when we compute and display the sample ACF 

of the series, by using ACF paragraph of  SCA system. 

 
Fig.3-Estimate of ACF for the  Lvolume . 
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The ACF has a slow die-out pattern that is indicative of a 

nonstationary series. Differencing is required. However, 

because the data is seasonal, the study may wonder if the 

“proper” differencing operator is (1-B) or (1- 12 B ). We 

can examine the sample ACF by using both of these 

differencing operators. The output is edited for presentation 

purposes as shown below. -- >ACF LVOLUME. 

DFORDERS 1 12. 

 

Fig.4-Estimate of ACF for differenced Lvolume (d=1,D=1). 

 

Model estimation  

The study estimates the volume model by using ESTIM 

paragraph as:   

Table 1-Summary of estimate time series for  Lvolume 

 
Parameters estimates are significant based on their t-values. 

Diagnostic check of model 

A time plot of the residual series does not reveal any gross 

abnormalities, although some unusual points appear to be 

present. We can compute and display 24 lags of the sample 

ACF of the residuals. We see the sample ACF of the 

residuals is “clean”. The output is edited for presentation 

purposes. 

 

Fig.5-The ACF plot for the residuals of suggested model. 
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The detection of outliers when the parameters Unknown 

To demonstrate outlier detection, the study used the 

OUTLIER paragraph of SCA system for Lvolume time 

series. The study obtained the following estimates for 

model parameters and outliers at different critical values 

(2.5, 3.0, 3.5 ,4.0) for outlier detection, as seen in table(2). 

Table 2-The estimates of outliers and it types with different 

critical values 

 

The study illustrates that the number of outliers decrease 

whenever critical values increase. Alternatively,we could 

have estimated model Lvolume using the OESTIM 

paragraph. In this way the SCA System will simultaneously 

detect outliers and jointly estimate their effects with the 

parameter.When critical value equal to 2.5 as seen in table 

(3). 

 

Table 3-Summary of estimate time series model for volume 

(cd=2.5) 

 
The OFORECAST paragraph extends the outlier detection 

and adjustment capabilities of the SCA System to the 

forecasting of a time series in the presence of outliers. 

Unlike other forecasting capabilities that simply utilize the 

current parameter estimates and the data on hand to 

compute forecasts, the OFORECAST paragraph also 

performs its own outlier detection and adjustment. As a 

result, it provides us with: 
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Table 4-Forecasts for Volume after adjusting the outliers 

(Cd=2.5). 

 
 

  We can converse the forecasting value of  Lvolume to the 

origin values before taking the natural logarithmic. Then 

compare these values with the forecasts by using the fitted 

ARIMA model, assuming that the outliers are not presence, 

the results shown as in the table (3.16) below by using 

critical value (4.0). 

 

 

Table 5-Forecasts for the volume data with and without 

adjusting the outliers 

 
And we note that the Mse(0.052905) forecast without 

adjusting the outlier is greater than the Mse (0.043100) of 

forecasting with adjusting the outlier. This means that when 

analyzing the data of time series, first we must detect and 

adjust the outliers.    

 

IV. CONCLUSIONS 

 The study came to conclude that throughout the research, 

the following conclusions: first, every time increasing the 

critical value, the value of residual standard error (with 

outlier adjustment) increased. Second, every time increasing 

the critical value, the number of outlier values decreased. 

Third, in the case of presence of outliers the forecasts with 

adjustment of outliers better than the forecasts without 

adjusting outliers.   

Since the procedures are based on simple techniques, they 

are widely applicable. For instance, they can be used as data 

screening device in spectral density estimation and in robust 

time series analysis. They can also be used in biological 

study where exogenous disturbances are unavoidable. For 

example, Greenhouse, Kass and Tsay (1987) analysed body 
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temperature of an individual involved in a psychiatric study 

where the observations clearly depended on the individual 

physical activities. A variance change from day to night 

seems highly plausible. A third application of the 

procedures is that they can be used to identify the time point 

of an intervention in the intervention analysis of Box and 

Tiao (1975). In the traditional intervention analysis, the 

time point of an intervention is assumed to be known. 

Finally, two remarks are made on the procedures. First, in 

Section 4 the adjusted series was used in the detection 

process to demonstrate the usefulness of the suggested 

procedure. This, however, does not imply that one can rely 

on the adjusted series to make inferences. A more 

appropriate strategy would be (a) to search for the causes of 

the identified outliers, level changes and variance changes, 

(b) to specify a general model in the form of (2) based on 

causes of the exogenous disturbances, and (c) to estimate 

jointly the impact of disturbances and the time series 

parameters. This strategy allows for the use of prior 

information of the disturbances. It can also reduce the 

possibility of over parameterization that arises from the 

abuse of the detection procedure. Readers are referred to 

Tsay (1986a) for further discussion. Second, to detect the 

transient level change, 6 = 0.8 was used in Section 4. In 

fact, other values of 6 can also be used. As an example, 6 = 

0.6 was used to the air-passenger-miles data of Example 1. 

The procedure still identified the same time points as 

significant disturbances even though some of the 

classifications between permanent and transient level 

changes are different. Similarly, to detect the variance 

changes, h = 30 was used to compute residual variances at 

both ends of a series. The choice of h is not critical as long 

as it is reasonable. For instance, the same detection results 

were obtained in Example 2 when h = 20 was used. In 

general, a h between 20 and 30 appears to be useful. 

The study supports the claim that outliers do result in model 

misspecification as they affect the autocorrelation structure 

of any time series. In our case it is illustrated by the fact that 

initially we had the ARIMA (1 1 0) *(0 0 1) 12 as the best 

model that could be fitted to our data. Testing the residuals 

for normality and constant variance showed that both 

assumptions were violated although the parameters in the 

model were significant. Using this model for forecasts 

would have given misleading figures for a decision maker. 

This is possibly attributed to the presence of outliers. The 

best model was found to be ARIMA (1 1 2) *(0 0 1) 12 

after correcting the series for outliers and all the parameters 

were significant in the model. Diagnostic checks also 

showed that the assumptions of normality and constant 

variance were not violated. This therefore demonstrates that 

the procedure is useful in detecting and correcting for 

outliers. It can be applied to all invertible ARIMA models. 

Moreover, it is flexible and easy to interpret. The procedure 

must be used with other diagnostic tools for time series to 

produce even better results. Further study is needed to 

investigate the variances and other sampling properties of 

the resulting parameter estimates. The message from this 

study is that when examining economic time series data any 

potential outliers should be taken seriously, no matter what 

the ultimate aim or the model used may be. Outliers have 

already been shown to be potentially harmful, and there is 

also increasing evidence that the dangers are not only 

theoretical. Other possible models that might be useful for 

modelling time series must be explored such as GARCH 

and ARCH models. These are non-linear forms of time 

series that might be used to model data that has got a lot of 

fluctuations in it. Non-linearity tests are normally done on 

the data before the previous models can be applied. The 

study suggested for future studies the following:  Studying 

the methods of detection outliers in multivariate time series 

and application.  Studying the detection outlier when occurs 

at the end of the series, and finally studying the detection 

outlier when presence the missing data in the series. 
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