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Abstract— Of concern in this work is the derivation and implementation of the multistep methods through Taylor’s expansion 

and numerical integration. For the Taylor’s expansion me thod, the series is truncated after some terms to give the needed 

approximations which allows for the necessary substitutions for the derivatives to be evaluated on the differential equations . 

For the numerical integration technique, an interpolating polyn omial that is determined by some data points replaces the 

differential equation function and it is integrated over a specified interval. The methods show that they are only convergent  if 

and only if they are consistent and stable. In our numerical examples, the methods are applied on non-stiff initial value 

problems of first-order ordinary differential equations, where it is established that the multistep methods show superiority 

over the single-step methods in terms of robustness, efficiency, stability and accuracy, the only setback being that the multi-

step methods require more computational effort than the single-step methods. 

Keywords— linear multi-step method; numerical solution; ordinary differential equation; initial value problem; stability; 

convergence. 

 

I. INTRODUCTION 

Linear multistep methods (LMMs) are very popular for solving initial value problems (IVPs) of ordinary differential 

equations (ODEs). They are also applied to solve higher order ODEs. LMMs are not self-starting hence, need starting values  

from single-step methods like Euler’s method and Runge-Kutta family of methods. 

 

 The general 𝑘-step LMM is as given by Lambert [1] 

 
k k

j n j j n j

j 0 j 0

x h   

 

                           (1) 

where andj j   are uniquely determined and 
0 0 k0, 1      . The LMM in Equation (1) generates discrete schemes 

which are used to solve first-order ODEs. Other researchers have introduced the continuous LMM using the continuous 

collocation and interpolation approach leading to the development  of the continuous LMMs of the form  

 
k k

j n j j n j

j 0 j 0

y( t ) ( t )x h ( t )   

 

                         (2) 

where andj j   are expressed as continuous functions of 𝑥 and are at least differentiable once [2].  

According to [3], the existing methods of deriving the LMMs in discrete form include the interpolation approach, numerical 

integration, Taylor series expansion and through the determination of the order of LMM. Continuous collocation and 

interpolation technique are also used for the derivation of LMMs, block methods and hybrid methods.  

 

In this study, we present the general multistep method, some of its different types and examine their characteristics. In lig ht 

of this, we investigate the stability and convergence of these methods, compare the multistep methods with the single -step 

methods in operational time, accuracy and user-friendliness via some numerical examples.  

In practice, only a few of the initial value differential equations that originate from the study of physical phenomena have 

exact solutions. The introduction however, of the multistep methods as numerical techniques is used in finding solutions to 

problems that have known exact solutions and in extension handle those problems whose exact solutions are not known. We 

shall limit this study to only non-stiff initial value problems of first-order ordinary differential equations. 
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The Linear Multistep Methods 

The general linear multistep method is given by 

 
k k

j n j j n j

j 0 j 0

x h   

 

                     (3) 

where the j  and j  are constants, whereas 
k 0   and both 

0  and 
0  are not zero. Since (3) can be multiplied on both 

sides by the same constant without altering the relationship, the coefficients j  and j  are taken arbitrarily to the extent of a 

constant multiplier. In this work however, we will assume that 
k 1  . If 

k 0  , the equation (3) is explicit otherwise it is 

implicit  [4].  

 

The Adams methods  

 These are the most important linear multistep methods for non-stiff initial value problems. It is the class of multistep 

methods (3) with 
k 1  , 

k 1 1     and j 0  , j 0,1,2, ,k 2  . If equation (3) is given by 

 
k 1

n k n k 1 j n j

j 0

x x h  


   



   ,                        (4) 

then we have the Adams-Bashforth methods. And, if it is given by 

 
k

n k n k 1 j n j

j 0

x x h     



   ,                        (5) 

then we have the Adams-Moulton methods [5]. 

 

Predictor-Corrector (P-C) method  

The multistep methods are often implemented in a ‘predictor-corrector’ form. In this way, a preliminary calculation is done 

using the explicit form of the multistep method then corrected using the implicit form of the multistep method. This is done 

by two calculations of the function   at each step of this computation.  

 

Order of linear multistep methods 

We can associate the linear multistep method (3) with the linear difference operator  , defined by 

  
k

j j

j 0

x( r );h x( r jh ) h x ( r jh )  


      ,                  (6) 

where  x r  is any arbitrary function that is continuously differentiable on the interval  a,b . If the operator is allowed to 

operate on an arbitrary test function  x r  with as many higher derivatives as we require, we can formally define the order of 

the operator and of the associated multistep method without invoking the solution of the initial value problem (4) which may 

possess only a first derivative. If we expand the test function x( r jh )  and its derivative x ( r jh )   as Taylor series about r 

and collect terms in (6) we have 

   q ( q )

0 1 qx( r );h C x( r ) C hx ( r ) C h x ( r )                      (7) 

where the qC  constants [1]. 

 

Definition 1 The difference operator (6) and the linear multistep method (3) associated with it are of order   if, in (7),  

0 1 2C C C C 0      and 
1C 0   . 

The following formulae for the constants qC  in terms of the coefficients j  and  j  are given as: 

 
0 0 1 2 kC                                 (8) 

 1 1 2 3 k 0 1 2 kC 2 3 k ( )                                (9) 

  
q q

q 1 2 k q 1 q 1

1 2 k

1 1
C ( 2 k

q! ( q 1)!( 2 k )
  

   
    

   
            (10) 

for q 2,3, [1]. 
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II. CHARACTERISTICS OF THE METHODS 

With the number of approximations involved during computations using the multistep methods, the problem of consistency, 

stability and convergence call for discussion. The approximation in a one -step method depends directly on previous 

approximations alone, while the multistep method uses at least two of the previous approximations.  

 

Consistency 

The linear multistep method (3) is consistent if it has order 1  [4]. From (8), (9) and (10), it follows that the method is 

consistent if and only if the following two conditions hold. 

 
k

j

j 0

0


 ,                            (11) 

 
k k

j j

j 0 j 0

j 
 

                             (12) 

[1]. 

We shall subsequently consider the limits as h 0 , n  and nh r a   remaining fixed. 

Let 
nx  tend to x( r )  in the limit, that is 

nx x( r ) . Since k  is fixed, we have that n jx x( r )  , for j 0,1,2, ,k , or 

n j j ,nx( r ) x ( h )  ,  j 0,1,2, ,k  

where lim j ,n ( h ) 0  , j 0,1,2, ,k [1]. 

Hence, we have  

 
k k k

j j n j j j ,n

j 0 j 0 j 0

x( r ) x ( h )   

  

    , 

or replacing the first term on the right hand side of the equation by the term on the right hand side of (3) we have  

 
k k k

j j n j j j ,n

j 0 j 0 j 0

x( r ) h ( h )    

  

    . 

In the limit, both terms on the right hand side vanish. Therefore, the left hand side becomes zero. The left hand side is not  in 

general equal to zero, so we conclude that 
k

jj 0
0


 . The above argument holds if we merely assume that   x r  tends to 

some function  x r . 

Condition (12) ensures that the function  x r  does in fact satisfy the differential equation. For, under the limiting process, 

 
n j nx x

x ( r )
jh




 ,       for j 1,2, ,k ,  

or,   n j n j ,nx x jhx ( r ) jh ( h )
   ,    for j 1,2, ,k ,  

where   lim j ,n( h ) 0  . Hence, 

k k k k

j n j j n j j j ,n

j 0 j 0 j 0 j 0

x x h j x ( r ) ( h )    

   

       

or 
k k k k

j n j n j j j j ,n

j 0 j 0 j 0 j 0

h x hx ( r ) j h j ( h )     

   

      . 

Since  
k

jj 0
0


 , we have, on dividing through by h, 

 
k k k

j n j j j j ,n

j 0 j 0 j 0

x ( r ) j j ( h ).    

  

    . 

Under the limiting process, n j ( r,x( r ))   , and, in the limit, 

 
k k

j j

j 0 j 0

( r,x( r )) x ( r ) j .  
 

  . 

Thus x( r )  satisfies the differential equation (4) if and only if 
k

k

j jj 0
j 0

j 




  . This shows that if the sequence  nx  

converges to the solution of the initial value problem (4) then the conditions (11) and (12) must hold [1]. 
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Stability 

Let us introduce the first and second characteristic polynomials of the multistep method (3), defined as ( )   and ( )   

respectively, where 
k

j

j

j 0

( )   


  and   
k

j

j

j 0

( )   


  

[6]. 

It follows from conditions (11) and (12) that the linear multistep method is consistent if and only if (1) 0   and  

(1) (1)   [1]. The stability of the multistep technique with respect to round-off error is clearly dictated by the magnitude 

of the zeros of the first polynomial above. However, the methods we have discussed in this work are zero -stable by virtue of 

their characteristics. The following are motivated by the types of zeros of the characteristic polynomial. 

 

Theorem 3.1 

Let 
1 , 

2 , …, 
k  denote the roots (real or complex), which may not necessarily be distinct, of the characteristic equation 

associated with the multistep difference method. If 
n 1  , for n 1,2, ,k  and all the roots with absolute value equal to 1 

are simple roots, then the difference method satisfies the root condition [7]. 

 

Theorem 3.2 

i)  The methods that satisfy the root condition with 1   as the only root of the characteristic equation with magnitude 

equal to 1 are said to be strongly stable. That is, the roots lie on the unit disc.  

ii)  If a method satisfies the root condition and has more than one distinct root with magnitude equal to 1, it is said to be 

weakly stable. 

iii)  If a method does not satisfy the root condition, it is said to be unstable. A multistep method is said to be stable if and 

only if it satisfies the root condition [7]. 

 

Convergence 

One basic property that is demanded of an acceptable linear multistep technique is the convergence of the solution  nx  that 

is generated by the method, in some sense, to the theoretical solution  x r  as the step-size h goes to zero. A linear multistep 

method is convergent if and only if it is consistent and stable, otherwise it is not convergent [8]. If a method is consisten t but 

not stable, then it is not convergent. Also, if a method is stable but not consistent then it is not convergent. 

 

Obtaining Starting Values 

A multistep method is not self-starting, that is, a k-step multistep scheme requires some k previous values 
0 1 2 k 1x ,x ,x ,...x .

. 

These k  values that are needed to start the application of the multistep method are gotten by a single step method such as 

Taylor series method, Euler method or Runge-Kutta method. The starting method should be of the same or even lower order 

than the order of the multistep method itself. 

 

Taylor series method 

Let us consider the initial value problem 

 x ( r,x )  , 
0x  .                        (13) 

Let us consider a numerical solution to (13) above using a k-step multistep method of order  . We require that the starting 

values 
ix , i 1,2, ,k 1   should be calculated to an accuracy that is at least as high as the accuracy of the multistep method 

itself. That is, we require that 
1

i ix x( r ) O( h )   ,  i 1,2, ,k 1  . 

If enough partial derivatives of  ( r,x )  with respect to r and x exist, then we will use a truncated Taylor series to estimate 

ix  to any required degree of accuracy [9]. Thus, we have 

 

2 3
1

i 1 i i i i

h h
x x( r ) hx ( r ) x ( r ) x ( r ) O( h )

2! 3!

 


        ,              (14) 

for i 1,2, ,k 1  . The derivatives in (14) are evaluated by successively differentiating the differential equation. Thus, 

 0 0x( r ) x , 
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 x ( r ) ( r,x )  , 

 x ( r ) x
r x r x

   


   
    

   
 

 

22 2 2
2

2 2
x ( r ) 2

r x r x xr x

     
  

      
       

       
. 

This approach is theoretically flawless. Nevertheless, the evaluations of the total derivatives can be excessively tedious an d 

may not be adopted for an efficient computation.  

 

Euler method 

This is another method that can be employed to generate all the needed starting values for a linear multistep method. 

Consider the equation 

 x ( r,x )  , a r b  , x( a )  . 

Let us suppose that the solution to the initial value problem (15) above has two continuous derivatives on the interval  a,b , 

so that for each i 1,2, ,N 1  , we have 

 
2

i 1 i

i 1 i i 1 i i i

( r r )
x x( r ) ( r r )x ( r ) x ( )

2!


 


     , 

for some 
i  in

i i 1( r ,r )
 . Since  

i 1 ih r r   , we have  

 
2

i 1 i i i

h
x x( r ) hx ( r ) x ( )

2!


     

and, since x(r) satisfies our differential equation, we have  

 
2

i 1 i i i i

h
x x( r ) h ( r ,x( r ) x ( )

2!
 

   . 

By deleting the remainder term, the Euler method becomes  

 
0x   

 
i 1 i ix x h ( r,x ),    

for each  i 1,2, ,N 1  .  

The Euler method is gotten when the Taylor series method above is of order 1  . The simplicity of this method may be 

used to illustrate the techniques we intend to adopt in starting the multistep methods. 

 

Runge-Kutta method 

This method can also be applied to generate starting values for any multistep method.  

We consider the equation 

 
M

s s

s 1

x( r h ) x( r ) h w k


                            (15) 

where 

 
1k ( r,x ) ,  

s 1

s s si i

i 1

k ( r a h,x h k 




    ,  for s 2,3, ,M [1]. 

We call this an M-order Runge-Kutta method and it involves M function evaluations at each step. Each 
sk , k 1,2, ,M , 

may be interpreted as an approximation to the derivative x ( r ) . 

The objective is to choose 
sw , 

sa and 
sr  so that the coefficients of 

ih , i 1,2, ,M , in equation (14) are identical with 

those of the equation (15). That is, the method must compare with the Taylor series method after its expansion. The higher 

order derivatives of the Taylor series expansion is given by 

 x    

 r x r xx x         

 
2 2

rr r x xx x r xx 2             

and so on. 
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We note that the Runge-Kutta methods are not unique due to the manner in which they are derived. However, any Runge -

Kutta methods of the same order are equivalent.                                                       

 

Runge-Kutta method of order two 

This method uses two evaluations and it is given by 

 
i 1 i i i 2 2x x hw k hw k    , 

where  
1 i ik ( r ,x ) ,   

2 i i 1

1 1
k ( r h,x hk )

2 2
    

Runge-Kutta method of order four 

This method uses four evaluations. It is given by 

 
i 1 i 1 2 3 4

1
x x ( k 2k 2k k

6
      ,                     (16) 

Where 
1 i ik h ( r ,x )  

 
2 i i 1

1 1
k h ( r h,x hk )

2 2
    

 3 i i 2

h h
k h ( r ,x k )

2 2
     

 
4 i i 3k h ( r h,x k )    

[10].    

We note however, that this is not unique. The Runge-Kutta method of order four shall be used in obtaining the starting values 

for the implementation of the multistep methods adopted in this work. 

 

Derivations 

Any specific linear multistep may be derived in a number of different ways. We shall consider a selection of different 

approaches which cast some light on the nature of the approximation involved. 

 

Derivation through Taylor expansions 

Euler method 

Let us consider the Taylor series expansion for 
nx( r h )  about 

nr , 

 
2

n n n n

h
x( r h ) x( r ) hx ( r ) x ( r )

2!
                        (17) 

If we truncate this expansion after two terms and substitute for x ( r )  from the differential equation (4), we have 

 
n n n nx( r h ) x( r ) h ( r ,x( r ))   ,  

and the truncation error is 
2

n

h
x ( )

2
  for 

n  in 
n n 1( r ,r )

. 

If 
nx( r )  and 

nx( r h )  are replaced by 
nx  and

n 1x 
, we get 

 
n 1 n nx x h   ,                          (18) 

which is an explicit linear one-step method [11]. This shall be used in solving the numerical examples in this work.  

 

Mid-point rule  

Let us consider the Taylor series expansions for 
nx( r h )  and 

nx( r h )  about 
nr Thus, 

 

2 3

n n n n n

h h
x( r h ) x( r ) hx ( r ) x ( r ) x ( r )

2! 3!
       

 

 

2 3

n n n n n

h h
x( r h ) x( r ) hx ( r ) x ( r ) x ( r )

2! 3!
       

 
Subtracting, we have  

 

3

n n n n

h
x( r h ) x( r h ) 2hx ( r ) x ( r )

3!
      

 

Replacing nx( r h )  and nx( r h )   by n 1x    and n 1x  , we have n 1 n 1 nx x 2h   . 
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This can be brought into the standard form of the linear multistep method (13), after replacing n by n+1, as 

 
n 2 n n 1x x 2h                            (19) 

Its truncation error is 3

n

1
h x ( )

3
 [1]. 

This is the mid-point rule and it shall be used in solving the numerical examples presented in this work. 

 

The trapezoidal rule  

If we wish to find the most accurate one-step implicit method 
n 1 0 n 1 n 1 0 nx x h( )        , we write down the associated 

approximate relationship 

  n 0 n 1 n 0 nx( r h ) x( r ) h x ( r h ) x ( r )                         (20) 

and choose 
0 , 

0  and 
1  so as to make the approximation as accurate as possible.  

The following expansions are used: 

 
2

n n n n

h
x( r h ) x( r ) hx ( r ) x ( r )

2!
       

 
2

n n n n

h
x ( r h ) x ( r ) hx ( r ) x ( r )

2!
         

Substituting these two equations into (20) and collecting the terms on the left -hand side gives 

 
2 3

0 n 1 n 2 n 3 nC x( r ) C hx ( r ) C h x ( r ) C h x ( r ) 0       , 

where  

 
0 0C 1   , 

 
1 1 0C 1     , 

 2 1

1
C

2
  , 

 
3 1

1 1
C

6 2
  . 

Thus, in order to make the approximation in equation (20) as accurate as possible, we choose 
0 1   , 1 0

1
.

2
    The 

value of 
3C  then becomes 

1

12
 . The linear multistep method is now 

 n 1 n n 1 n

h
x x ( ).

2
      

This is the trapezoidal rule and its local truncation error is 
3

n

1
h x ( )

12
 [1]. 

 

Derivation through numerical integration 

This technique can be used to derive only a subclass of linear multistep methods consisting of those methods for which 

k 1   , j 1   , 
i 0  , i 0,1,2, , j 1, j 1   , j k . To start the derivation of any multistep method, we should note 

that the solution of the initial value problem given as  

 x ( r,x )  ,   a r b  ,   x( a )  , 

if integrated over 
n n 1[ r ,r ]

, has the property that 

 
n 1 n 1

n n

r r

n 1 n
r r

x( r ) x( r ) x ( r )dr ( r,x( r ))dr
 


    . 

Consequently, 

 
n 1

n

r

n 1 n
r

x( r ) x( r ) ( r,x( r ))dr


    .                    (21) 

We will integrate some interpolating polynomial P( r )  to ( r,x( r ))  which is determined by some previous data points that 

were obtained. Then, equation (21) becomes  

 
n 1

n

r

n 1 n
r

x( r ) x( r ) P( r )dr


    .                      (22) 
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Simpson’s rule 

Suppose we want to derive a two-step method, we consider the identity 

 
n 2

n

r

n 2 n
r

x( r ) x( r ) x ( r )dr



   .                      (23) 

Using the differential equation (4), we can replace x  by ( r , x )  in the integrand. The only available data for the 

approximate evaluation of the integral will be the values 
n , 

n 1 
 and 

n 2 
. Let P( r )  be the unique polynomial of second 

degree passing through the three points 
n n( r , ) , 

n 1 n 1( r , ) 
 and 

n 2 n 2( r , ) 
. By the Newton-Gregory forward interpolating 

formula, 

 2

n n n n

s( s 1)
P( r ) P( r sh ) s .

2!
   


      

We now make the approximation 

 
n 2 n 2

n n

r r 2
2

n n n
r r 0

1
x ( r )dr P( r )dr [ s s( s 1) ]hds

2
   

 

         

 2

n n n

1
h[ 2 2 ].

3
       

If we expand 
n  and 

2

n   in terms of 
n , 

n 1 
, 

n 2 
 and substitute in (23), we have  

 
n 2 n n 2 n 1 n

h
x x [ 4 ]

3
        . 

Then, the truncation error becomes 5 ( 5 )

n

1
h x ( )

90
 . 

This is the Simpson’s rule and it is the most accurate implicit linear two -step method [1]. 

 

Adams-Bashforth methods 

Though any form of the interpolating polynomials could be used for the derivations, the Newton backward -difference 

formula will be used for the purpose of convenience. For us to derive an explicit k-step Adams-Bashforth method, we now 

form the backward-difference polynomial 
k 1P ( r )

 through 
n n n( r , ( r ,x( r ))) , 

n 1 n 1 n 1( r , ( r ,x( r )))  
, , 

n 1 k n 1 k n 1 k( r , ( r ,x( r )))     
. Since 

k 1P ( r )
 is an interpolating polynomial of degree k 1 , then for some 

n  in 
n 1 k n( r ,r ) 

, 

we have  

 

( k )

n n

k 1 n n 1 n 1 k

( ,x( ))
( r ,x( r ) P ( r ) ( r r )( r r ) ( r r )

k !

  
         . 

Introducing the substitution 
nr r sh  , and with dr hds  into 

k 1P 
 and with the error term, it implies that 

 
n 1 n 1

n n

k 1r r
m m

n n
r r

m 0

s
( r ,x( r ))dr ( 1) ( r ,x( r ))dr

m
 

 




 
   

 
   

 
n 1

n

( k )
r

n n

n n 1 n 1 k
r

( ,x( ))
( r r )( r r ) ( r r )dr

k !

  

       

 

k 1k 1 1 1
m m ( k )

n n n n
0 0

m 0

s h
( r ,x( r ))h( 1) ds s( s 1) ( s k 1) ( ,x( ))ds

m k !
   





 
       

 
   . 

 

The integrals 
1

m

0

s
( 1 ) ds

m

 
  

 
  for various values of m  can be evaluated easily as displayed below. 

For, 

 
1

m

0

s 1
m 1 : ( 1) ds

m 2

 
   

 
  

 
1

m

0

s 5
m 2 : ( 1) ds

m 12

 
   

 
  

 
1

m

0

s 3
m 1 : ( 1) ds

m 8
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1

m

0

s 251
m 1 : ( 1) ds

m 720

 
   

 
  

 
1

m

0

s 95
m 1 : ( 1) ds

m 288

 
   

 
  

As a consequence of these evaluations,  

 
n 1

n

r
2

n n n n n n
r

1 5
( r,x( r ))dr h ( r ,x( r )) ( r ,x( r )) ( r ,x( r ))

2 12
   

  
      

 
  

 
1

k 1 ( k )

n n
0

1
h s( s 1) ( s 1 k ) ( ,x( ))ds

k !
      .                (24) 

The coefficient s( s 1)( s 2 ) ( s k 1)     does not change sign on the interval  0,1  [12]. The weighted mean value 

theorem for integrals can be used to deduce that for a number 
n , where 

n 1 k n n 1r r    , the error term in equation (24) 

becomes 

 
k 1 kk 1

1 1
( k ) n n

n n
0 0

h ( ,x( ))h
s( s 1) ( s 1 k ) ( ,x( ))ds s( s 1) ( s k 1)ds

k ! k !

  
  



         

or the error term can be written as  

 
1

k 1 ( k ) m

n n
0

s
h ( ,x( ))( 1) ds

k
  

 
  

 
  

[7]. 

 

Adams-Bashforth two-step explicit method: 

 
n 1 n n n n n

1
x( r ) x( r ) h[ ( r ,x( r )) ( r ,x( r ))]

2
     

 

 
 n n n n n n 1 n 1

h
x( r ) h ( r ,x( r )) ( r ,x( r )) ( r ,x( r ))

2
       

 

 n n n n 1 n 1

h
x( r ) [3 ( r ,x( r )) ( r ,x( r ))].

2
       

Consequently, the explicit Adams-Bashforth two-step method is: 

 
0 0x , 1 1x   

 n 1 n n n n 1 n 1

h
x x [3 ( r ,x( r )) ( r ,x( r ))].

2
      . 

This can be taken into the standard form of the linear multistep method, after replacing n  by n 1 . Thus, 

 n 2 n 1 n 1 n

h
x x [3 ].

2
                   (25) 

The local truncation error is  

 

2

n 1 n

5
( h ) x ( )h

12
 


, 

for some 
n  n 1 n 1( r ,r ) 

[7]. 

This method shall be used in solving the numerical examples in this work. 

 

Adams-Bashforth three-step explicit method: 

 

2

n 1 n n n n n n n

1 5
x( r ) x( r ) h ( r ,x( r )) ( r ,x( r )) ( r ,x( r ))

2 12
  

 
      

   

 

 n n n n n n 1 n 1

1
x( r ) h ( r ,x( r )) ( r ,x( r )) ( r ,x( r ))

2
    


   

  

 n n n 1 n 1 n 2 n 2

5
( r ,x( r )) 2 ( r ,x( r )) ( r ,x( r ))

12
     


   


 

 n n n n 1 n 1 n 2 n 2

h
x( r ) 23 ( r ,x( r )) 16 ( r ,x( r )) 5 ( r ,x( r )) .

12
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Consequently, the Adams-Bashforth three-step explicit method is  

 
0 0x , 1 1x  ,  

2 2x   

  n 1 n n n n 1 n 1 n 2 n 2

h
x x 23 ( r ,x ) 16 ( r ,x ) 5 ( r ,x )

12
          , 

for n 2,3, ,N 1  . 

Replacing n  by n 2 , the standard form becomes  

  n 3 n 2 n 2 n 1 n

h
x x 23 16 5 .

12
                            (26) 

Again, the local truncation error can be shown to be  

 ( 4 ) 3

n 1 n

3
( h ) x ( )h

8
   , for 

n  n 2 n 1( r ,r ) 
[7]. 

Results from this method shall be displayed along with the results of the exact solutions for our numerical examples.  

 

Adams-Bashforth four-step explicit method: 

 
0 0x , 1 1x  , 

2 2x  , 
3 3x   

 n 1 n n n n 1 n 1 n 2 n 2 n 3 n 3

h
x x 55 ( r ,x ) 59 ( r ,x ) 37 ( r ,x ) 9 ( r ,x )

24
              , 

where n 3,4, ,N 1  . 

Replacing n  by n 3 , we have  

  n 4 n 3 n 3 n 2 n 1 n

h
x x 55 59 37 9

24
            .                (27) 

The local truncation error is  

 
( 5 ) 4

n 1 n

251
( h ) x ( )h

720
   , for some 

n  n 3 n 1( r ,r ) 
[7]. 

Results from this method shall be shown along with the results of the exact solutions for the numerical examples. 

 

Adams-Bashforth five-step explicit method 

 
0 0x , 1 1x  , 

2 2x  , 
3 3x  , 

4 4x   

 
n n n 1 n 1 n 2 n 2

n 1 n

n 3 n 3 n 4 n 4

1901 ( r ,x ) 2774 ( r ,x ) 2616 ( r ,x )h
x x

1271 ( r ,x ) 251 ( r ,x )720

  

 

   



   

   
   

 
 

where n 4,5, ,N 1  . 

Replacing n  by n 4 , we have  

  n 5 n 4 n 4 n 3 n 2 n 1 n

h
x x 1901 2774 2616 1271 251

720
               . 

The local truncation error is  

 
( 6 ) 5

n 1 n

95
( h ) x ( )h

288
   , for some 

n  n 4 n 1( r ,r ) 
[7]. 

 

Adams-Moulton method 

To derive Adams-Moulton implicit k-step method, we can form the backward-difference polynomial 
kP ( r )  through 

n 1 n 1 n 1( r , ( r ,x( r )))  
,

n n n( r , ( r ,x( r ))) , , 
n 1 k n 1 k n 1 k( r , ( r ,x( r )))     

. Since P( r )  is an interpolating polynomial of degree 

k , then for some 
n  in 

n 1 k n 1( r ,r )  
, we have,  

 

( k 1 )

n n

k n 1 n n 1 k

( ,x( ))
( r ,x( r ) P ( r ) ( r r )( r r ) ( r r )

( k 1)!

  




      


. 

Introducing the substitution nr r sh  , and with dr hds  into kP  and with the error term, it implies that 

 
n 1 n 1

n n

kr r
m m

n n
r r

m 0

s
( r ,x( r ))dr ( 1) ( r ,x( r ))dr

m
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n 1

n

( k 1 )
r

n n

n 1 n n 1 k
r

( ,x( ))
( r r )( r r ) ( r r )dr

( k 1)!

  



     


 

 

k 1
m m

n n
0

m 0

s
( r ,x( r ))h( 1) ds

m




 
    

 
 

 

 
k 2

1
( k 1 )

n n
0

h
( s 1)s( s 1) ( s k 1) ( ,x( ))ds.

( k 1)!
  


    

   

The integrals 
1

m

0

s
( 1 ) ds

m

 
  

 
  for various values of m  can be evaluated easily as displayed below: 

For, 

 
1

m

0

s 1
m 1 : ( 1) ds

m 2

 
    

 
  

 
1

m

0

s 1
m 2 : ( 1) ds

m 12

 
    

 
  

 
1

m

0

s 1
m 1 : ( 1) ds

m 24

 
    

 
  

 
1

m

0

s 19
m 1 : ( 1) ds

m 720

 
    

 
  

 
1

m

0

s 3
m 1 : ( 1) ds .

m 160

 
    

 
  

As a consequence of these evaluations,  

 
n 1

n

r
2

n 1 n 1 n 1 n 1 n 1 n 1
r

1 1
( r,x( r ))dr h ( r ,x( r )) ( r ,x( r )) ( r ,x( r ))

2 12
   



     

 
      

 
  

 
k 2

1
( k 1 )

n n
0

h
( s 1)s( s 1) ( s 1 k ) ( ,x( ))ds.

( k 1)!
  


    

   

The coefficient ( s 1)s( s 1)( s 2 ) ( s k 1)      does not change sign on the interval  0,1 [12]. The weighted mean value 

theorem for integrals can be used to deduce that for a number 
n , where 

n 1 k n n 1r r    , the error term in equation above 

becomes 

 
k 2

1
( k 1 )

n n
0

h
( s 1)s( s 1) ( s 1 k ) ( ,x( ))ds

( k 1)!
  


   

   

 

( k 2 ) ( k 1 )
1

n n

0

h ( ,x( ))
( s 1)s( s 1) ( s k 1)ds,

( k 1)!

   

    
   

or the error term can be written as   

 
1

k 2 ( k 1 ) m

n n
0

s
h ( ,x( ))( 1) ds

k
   

 
  

 
  

[13]. 

 

Adams-Moulton two-step implicit method: 

 
0 0x , 1 1x   

 
 n 1 n n 1 n 1 n n n n

h
x x 5 ( r ,x ) 8 ( r ,x ) r ,x

12
         

 

where n 1,2, ,N 1.   

To put this in standard form, we replace n  by n 1 . Thus, 

  n 2 n 1 n 2 n 2 n 1 n 1 n n

h
x x 5 ( r ,x ) 8 ( r ,x ) r ,x .

12
              

The local truncation error is  
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 ( 4 ) 3

n 1 n

1
( h ) x ( )h

24
    , for some 

n  n 1 n 1( r ,r ) 
[7]. 

 

Adams-Moulton three-step method: 

 
0 0x , 1 1x  ,

2 2x ,  

  n 1 n n 1 n 1 n n n 1 n 1 n 2 n 2

h
x x 9 ( r ,x ) 19 ( r ,x ) 5 ( r ,x ) ( r ,x )

24
              , 

for n 2,3, ,N 1  . 

Replacing n  by n 2 , we have 

 n 3 n 2 n 3 n 3 n 2 n 2 n 1 n 1 n n

h
x x 9 ( r ,x ) 19 ( r ,x ) 5 ( r ,x ) ( r ,x )

24
                

The local truncation is  

 ( 5 ) 4

n 1 n

19
( h ) x ( )h

720
    , for 

n  n 2 n 1( r ,r ) 
[7]. 

 

Adams-Bashforth four-step explicit method: 

0 0x , 1 1x  ,
2 2x  ,

3 3x ,

 n 1 n n 1 n 1 n n n 1 n 1 n 2 n 2 n 3 n 3

h
x x 251 ( r ,x ) 646 ( r ,x ) 264 ( r ,x ) 106 ( r ,x ) 19 r ,x ,

720
                    where 

n 3,4, ,N 1  . 

Replacing n  by n 3 , we have  

  ( , ) ( , ) ( , ) ( , ) ,n 4 n 3 n 4 n 4 n 3 n 3 n 2 n 2 n 1 n 1 n n

h
x x 251 r x 646 r x 264 r x 106 r x 19 r x

720
                      

The local truncation error is  

 
( 6 ) 5

n 1 n

3
( h ) x ( )h

160
    , for some 

n  n 3 n 1( r ,r ) 
[7]. 

 

Numerical Examples 

We will now solve the following problems  using some of the methods discussed in this work and the results displayed in 

tables along with the results of the corresponding exact solutions. 

 

Example1:  Given that 

 
2x x r   , x(0 ) 1 , 

we obtain the values of x  for r 0.1,0.2,0.3,0.4  by the Euler method, Runge-Kutta method of order four, mid-point rule, 

Adams-Bashforth two-step explicit method, Adams-Bashforth three-step explicit method and Adams-Bashforth four-step 

explicit method and then compare the result with the exact solution
2 rx( r ) r 2r 2 e     to obtain the error.  

 

Example 2:  We solve the initial value problem 

xx r  ,                             x(0 ) 1 ,                       0 r 0.4  , 

using the Euler method, Runge-Kutta method of order four, mid-point rule, Adams-Bashforth two-step explicit method, 

Adams-Bashforth three-step explicit method and Adams-Bashforth four-step explicit method with step size h 0.1  and then 

compare the results with the exact solution 
2x( r ) r 1  .  

 

Euler method for Example 1 

Using equation (18)  n 1 n nx x h   , 

n 0 :  1 0 0x x h   

  0r 0 ,  0x 1  

  0 (0,1) 1    
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1x 1 0.1 1 1.1     

n 1:  
2 1 1x x h   

  
1r 0.1 ,  

1x 1.1  

  
1 (0.1,1.1) 1.09    

  
2x 1 0.1 1.09 1.209     

n 2 :  
3 2 2x x h   

  
2r 0.2 ,    

2x 1.209  

  
2 (0.2,1.209 ) 1.169    

  
3x 1.209 0.1 1.169 1.3259     

n 3 :  
4 3 3x x h   

  
3r 0.3 ,    

3x 1.3259  

  
3 (0.3,1.3259 ) 1.2359    

  
4x 1.3259 0.1 1.2359 1.449949     

The result of the Euler method is displayed in TABLE1. 

  

Table.1: Euler’s rule for Example 1 

r x(r) Exact solution Error 

0.0 1.000000 1.000000 0.000000 

0.1 1.100000 1.104829 0.004829 

0.2 1.209000 1.218597 0.009597 

0.3 1.325900 1.340141 0.014241 

0.4 1.449949 1.468175 0.018226 

 

Runge-Kutta method of order four for Example 1 

Using equation (16)  n 1 n 1 2 3 4

1
x x k 2k 2k k

6
      , 

where   
1 n nk h ( r ,x ) , 

  2 n n 1

h 1
k h r ,x k

2 2

 

   
 

 

  3 n n 2

h 1
k h r ,x k

2 2

 

   
 

 

   4 n n 3k h r h,x k    

n 0 :  
0r 0 ,   

0x 1  

   1k 0.1 0,1   

   0,1 1   

  
1k 0.1 1 0.1    

   2k 0.1 0.05,1.05   

   0.05,1.05 0.10475   

  
2k 0.1 0.10475 0.10475    

   3k 0.1 0.05,1.052375   

   0.05,1.052375 1.049875   

  3k 0.1 1.049875 0.1049875    

   4k 0.1 0.1,1.1049875   

   0.1,1.1049875 1.0949875   
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4k 0.1 1.0949875 0.10949875      1

1
x 1 0.1 2 0.10475 2 0.1049875 0.10949875 1.104829

6
         

n 1:  
1r 0.1 ,   

1x 1.104829  

   1k 0.1 0.1,1.104829   

   0.1,1.104829 1.094829   

  
1k 0.1 1.104829 0.109483    

   2k 0.1 0.15,1.159571   

   0.15,1.159571 1.137071   

  
2k 0.1 1.137071 0.113707    

   3k 0.1 0.15,1.161683   

   0.15,1.161183 1.139183   

  
3k 0.1 1.139183 0.113918    

   4k 0.1 0.2,1.218747   

   0.2,1.218747 1.178747   

  
4k 0.1 1.178747 0.117875           

    2

1
x 1.104829 0.109483 2 0.113707 2 0.113918 0.117875 1.218597

6
         

n 2 :  
2r 0.2 ,   

2x 1.218597  

   1k 0.1 0.2,1.218597   

   0.2,1.218597 1.178597   

  
1k 0.1 1.178597 0.117860    

   2k 0.1 0.25,1.277527   

   0.25,1.277527 1.215027   

  
2k 0.1 1.215027 0.121503    

   3k 0.1 0.25,1.279349   

   0.25,1.279349 1.216849   

  
3k 0.1 1.216849 0.121685    

   4k 0.1 0.3,1.340282   

   0.3,1.340282 1.250282   

4k 0.1 1.250282 0.125028  

   3

1
x 1.218597 0.117860 2 0.121503 2 0.121685 0.125028 1.340141

6
         

n 3 :  
3r 0.3 ,   

1x 1.340141  

   1k 0.1 0.3,1.340141   

   0.3,1.340141 1.250141   

  1k 0.1 1.250141 0.125014    

   2k 0.1 0.35,1.402648   

   0.35,1.402648 1.280148   

  2k 0.1 1.280148 0.128015    

   3k 0.1 0.35,1.404149   
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   0.35,1.404149 1.281649   

  
3k 0.1 1.281649 0.128165    

   4k 0.1 0.4,1.468306   

   0.4,1.468306 1.308306   

  
4k 0.1 1.308306 0.130831    

   4

1
x 1.340141 0.125014 2 0.128015 2 0.128165 0.130831 1.468175

6
         

The result of the Runge-Kutta method is displayed on TABLE2.  

 

Table.2: Runge-Kutta method of order four for Example 1 

r x(r) Exact solution Error 

0.0 1.000000 1.000000 0.000000 

0.1 1.104829 1.104829 0.000000 

0.2 1.218597 1.218597 0.000000 

0.3 1.340141 1.340141 0.000000 

0.4 1.468175 1.468175 0.000000 

 

Mid-point rule for Example 1 

Using equation (19) 
n 2 n n 1x x 2h   ,      

n 0 :  
2 0 1x x 2h   

  
0r 0 ,    

0x 1 ,    
1r 0.1 ,     

1x 1.104829  

   1 0.1,1.104829 1.094829    

  
2x 1 2 0.1 1.094829 1.218966      

n 1:  
3 1 2x x 2h   

  
2r 0.2 ,    

2x 1.218966  

   2 0.2,1.218966 1.178966    

  
3x 1.104829 2 0.1 1.178966 1.340622      

n 2 :  
4 2 3x x 2h   

  
3r 0.3 ,    

3x 1.340622  

   3 0.3,1.340622 1.250622    

  
4x 1.218966 2 0.1 1.250622 1.6909      

The result of the mid-point rule is displayed on TABLE 3. 

 

Table.3. Mid-point rule for Example 1 

r x(r) Exact solution Error 

0.0 1.000000 1.000000 0.000000 

0.1 1.104829 1.104829 0.000000 

0.2 1.218966 1.218597 0.000369 

0.3 1.340622 1.340141 0.000481 

0.4 1.469090 1.468175 0.000915 

 

Adams-Bashforth two-step explicit method for Example 1 

Using equation (25)  n 2 n 1 n 1 n

h
x x 3

2
      , 

n 0 :   2 1 1 0

h
x x 3

2
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0r 0 ,    

0x 1 ,    
1r 0.1 ,    

1x 1.104829  

   0 0,1 1    

   1 0.1,1.104829 1.094829    

   2

0.1
x 1.104829 3 1.094829 1 1.219053

2
       

n 1:   3 2 2 1

h
x x 3

2
     

  
1r 0.1 ,    

1x 1.104829 ,    
2r 0.2 ,    

2x 1.219053  

   1 0.1,1.104829 1.094829    

   2 0.2,1.219053 1.179053    

   2

0.1
x 1.219053 3 1.179053 1.094829 1.341170

2
       

n 2 :   4 3 3 2

h
x x 3

2
     

  
2r 0.2 , 

2x 1.219053 , 
3r 0.3 ,    

3x 1.341170  

   2 0.2,1.219053 1.179053    

   3 0.3,1.341170 1.251170    

   4

0.1
x 1.341170 3 1.251170 1.179053 1.469893

2
       

The result of the Adams-Bashforth two-step method is displayed in TABLE 4. 

 

Table.4: Adams-Bashforth two-step method for Example 1 

r x(r) Exact solution Error 

0.0 1.000000 1.000000 0.000000 

0.1 1.104829 1.104829 0.000000 

0.2 1.219053 1.218597 0.000456 

0.3 1.341170 1.340141 0.001029 

0.4 1.469893 1.468175 0.001718 

 

Adams-Bashforth three-step explicit method for Example 1 

Using equation (26)     n 3 n 2 n 2 n 1 n

h
x x 23 16 5

12
          

n 0 :   3 2 2 1 0

h
x x 23 16 5

12
       

  
0r 0 , 

0x 1 , 
1r 0.1 , 

1x 1.104829 , 
2r 0.2 , 

  
2x 1.218597  

   0 0,1 1    

   1 0.1,1.104829 1.094829    

   2 0.2,1.218597 1.178597    

       3

0.1
x 1.218597 23 1.178597 16 1.094829 5 1 1.340184

12
        

n 1:   4 3 3 2 1

h
x x 23 16 5

12
       

  1r 0.1 , 1x 1.104829 , 2r 0.2 , 2x 1.218597  

  3r 0.3 , 3x 1.340141  
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   1 0.1,1.104829 1.094829    

   2 0.2,1.218597 1.178597    

   3 0.3,1.340184 1.250184    

       4

0.1
x 1.340184 23 1.250184 16 1.178597 5 1.094829 1.468274

12
        

The result of the Adams-Bashforth three-step explicit method is displayed in TABLE 5. 

 

Table.5: Adams-Bashforth three-step explicit method for Example 1 

r x(r) Exact solution Error 

0.0 1.000000 1.000000 0.000000 

0.1 1.104829 1.104829 0.000000 

0.2 1.218597 1.218597 0.000000 

0.3 1.340184 1.340141 0.000043 

0.4 1.468274 1.468175 0.000099 

 

Adams-Bashforth four-step explicit method for Example 1 

Using equation (27)   n 4 n 3 n 3 n 2 n 1 n

h
x x 55 59 37 9

24
             

n 0 :   4 3 3 2 1 0

h
x x 55 59 37 9

24
         

  
0r 0 , 

0x 1 , 
1r 0.1 , 

1x 1.104829 , 
2r 0.2 , 

  
2x 1.218597 , 

3r 0.3 , 
3x 1.340141 , 

   0 0,1 1    

   1 0.1,1.104829 1.094829    

   2 0.2,1.218597 1.178597    

   3 0.3,1.340141 1.250141    

         4

0.1
x 1.340141 55 1.250141 59 1.178597 37 1.094829 9 1 1.468179.

24
         

  

The result of the Adams-Bashforth four-step explicit method is displayed in TABLE 6. 

 

Table.6: Adams-Bashforth four-step explicit method for Example 1 

r x(r) Exact solution Error 

0.0 1.000000 1.000000 0.000000 

0.1 1.104829 1.104829 0.000000 

0.2 1.218597 1.218597 0.000000 

0.3 1.340141 1.340141 0.000000 

0.4 1.468179 1.468175 0.000004 

 

Euler method for Example 2 

Using equation (18)                     
n 1 n nx x h   , 

n 0 :  1 0 0x x h   

  
0r 0 ,  

0x 1  

  0 (0,1) 0    

  1x 1 0.1 0 1     

n 1:  2 1 1x x h   

  1r 0.1 ,  1x 1  
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1 (0.1,1) 0.1    

  
2x 1 0.1 0.1 1.01     

n 2 :  
3 2 2x x h   

  
2r 0.2 ,    

2x 1.01  

  
2 (0.2,1.01) 0.198020    

  
3x 1.01 0.1 0.198020 1.029802     

n 3 :  
4 3 3x x h   

  
3r 0.3 ,    

3x 1.029802  

  
3 (0.3,1.029802 ) 0.291318    

  
4x 1.029802 0.1 0.291318 1.058934     

 

The result of the Euler method is displayed in TABLE 7. 

 

Table.7: Euler’s rule for Example 2 

r x(r) Exact solution Error 

0.0 1.000000 1.000000 0.000000 

0.1 1.000000 1.104988 0.004988 

0.2 1.010000 1.019804 0.009804 

0.3 1.029802 1.044031 0.014229 

0.4 1.058934 1.077033 0.018099 

 

Runge-Kutta method of order four for Example 2 

Using equation (16)  n 1 n 1 2 3 4

1
x x k 2k 2k k

6
      , 

where  
1 n nk h ( r ,x ) , 

  2 n n 1

h 1
k h r ,x k

2 2

 

   
 

 

  3 n n 2

h 1
k h r ,x k

2 2

 

   
 

 

   4 n n 3k h r h,x k    

0r 0 ,  
0x 1  

   1k 0.1 0,1   

   0,1 0   

  
1k 0.1 0 0    

   2k 0.1 0.05,1   

   0.05,1 0.05   

  
2k 0.1 0.05 0.005    

   3k 0.1 0.05,1.0025   

   0.05,1.0025 0.049875   

  3k 0.1 0.049875 0.004988    

   4k 0.1 0.1,1.004988   

   0.1,1.004988 0.099504   

4k 0.1 0.009950 0.009950      1

1
x 1 0 2 0.005 2 0.004988 0.009950 1.004988

6
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n 1 :  
1r 0.1 ,   

1x 1.004988  

   1k 0.1 0.1,1.004988   

   0.1,1.004988 0.099504   

  
1k 0.1 0.099504 0.009950    

   2k 0.1 0.15,1.009963   

   0.15,1.009963 0.148520   

  
2k 0.1 0.148520 0.014852    

   3k 0.1 0.15,1.0112414   

   0.15,1.012414 0.148161   

  
3k 0.1 0.148161 0.014816    

   4k 0.1 0.2,1.019804   

   0.2,1.019804 0.196116   

  
4k 0.1 0.196116 0.019612    

     2

1
x 1.04988 0.009950 2 0.014852 2 0.014816 0.019612 1.019804

6
         

n 2 :  
2r 0.2 ,   

2x 1.019804  

   1k 0.1 0.2,1.019804   

   0.2,1.019804 0.196116   

  
1k 0.1 0.196116 0.019612    

   2k 0.1 0.25,1.029610   

   0.25,1.029610 0.242810   

  
2k 0.1 0.242810 0.024281    

   3k 0.1 0.25,1.031945   

   0.25,1.031945 0.242261   

  
3k 0.1 0.242261 0.024226    

   4k 0.1 0.3,1.044030   

   0.3,1.044030 0.287348   

  
4k 0.1 0.287348 0.028735    

     3

1
x 1.019804 0.019612 2 0.024281 2 0.024226 0.028735 1.044031

6
         

n 3  
3r 0.3 ,   

1x 1.044031  

   1k 0.1 0.3,1.044031   

   0.3,1.044031 0.287348   

  
1k 0.1 0.287348 0.028735    

   2k 0.1 0.35,1.058399   

   0.35,1.058399 0.330688   

  2k 0.1 0.330688 0.033069    

   3k 0.1 0.35,1.060566   

   0.35,1.060566 0.330012   

  3k 0.1 0.330012 0.033001    
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   4k 0.1 0.4,1.077032   

   0.4,1.077032 0.371391   

4k 0.1 0.371391 0.037139  

   4

1
x 1.044031 0.028735 2 0.033069 2 0.033001 0.037139 1.077033.

6
         

The result of the Runke-Kutta method is displayed in TABLE 8. 

 

Table.8: Runge-Kutta method of order four for Example 2 

r x(r) Exact solution Error 

0.0 1.000000 1.000000 0.000000 

0.1 1.004988 1.004988 0.000000 

0.2 1.019804 1.019804 0.000000 

0.3 1.044031 1.044031 0.000000 

0.4 1.077033 1.077033 0.000000 

 

Mid-point rule for Example 2 

Using equation (19)             
n 2 n n 1x x 2h   ,      

n 0 :  
2 0 1x x 2h   

  
0r 0 ,    

0x 1 ,    
1r 0.1 ,     

1x 1.004988  

   1 0.1,1.004988 0.99504    

  
2x 1 2 0.1 0.099504 1.019901      

n 1:  
3 1 2x x 2h   

  
2r 0.2 ,    

2x 1.019901  

   2 0.2,1.019901 0.196097    

  
3x 1.004988 2 0.1 0.196097 1.044207      

n 2 :  
4 2 3x x 2h   

  
3r 0.3 ,    

3x 1.044207  

   3 0.3,1.044207 0.287299    

  
4x 1.019901 2 0.1 0.287299 1.077361      

The result of the mid-point rule is displayed in TABLE 9. 

 

Table.9: Mid-point rule for Example 2 

r x(r) Exact solution Error 

0.0 1.000000 1.000000 0.000000 

0.1 1.004988 1.004988 0.000000 

0.2 1.019901 1.019804 0.000097 

0.3 1.044207 1.044031 0.000176 

0.4 1.077361 1.077033 0.000328 

 

Adams-Bashforth two-step explicit method for Example 2 

Using equation (25)  n 2 n 1 n 1 n

h
x x 3

2
      , 

n 0 :   2 1 1 0

h
x x 3

2
     

  0r 0 ,    0x 1 ,    1r 0.1 ,    1x 1.004988  

   0 0,1 0    
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   1 0.1,1.004988 0.099504    

   2

0.1
x 1.004988 3 0.099504 0 1.019914

2
       

n 1:   3 2 2 1

h
x x 3

2
     

  
1r 0.1 ,    

1x 1.004988 ,    
2r 0.2 ,    

2x 1.019914  

   1 0.1,1.004988 0.099504    

   2 0.2,1.019914 0.196095    

  2

0.1
x 1.019914 3 0.196095 0.099504 1.044353

2
       

n 2 :   4 3 3 2

h
x x 3

2
     

  
2r 0.2 ,    

2x 1.019914 ,    
3r 0.3 ,    

3x 1.044353  

   2 0.2,1.019914 0.196095    

   3 0.3,1.044353 0.287259    

   4

0.1
x 1.044353 3 0.287259 0.196095 1.077637

2
       

The result of the Adams-Bashforth two-step explicit method is displayed in Table 10. 

 

Table.10: Adams-Bashforth two-step explicit method for Example 2 

r x(r) Exact solution Error 

0.0 1.000000 1.000000 0.000000 

0.1 1.004988 1.004988 0.000000 

0.2 1.019914 1.019804 0.000110 

0.3 1.044353 1.044031 0.000322 

0.4 1.077637 1.077033 0.000604 

 

Adams-Bashforth three-step explicit method for Example 2 

Using equation (26)     n 3 n 2 n 2 n 1 n

h
x x 23 16 5

12
          

n 0 :   3 2 2 1 0

h
x x 23 16 5

12
       

  
0r 0 , 

0x 1 , 
1r 0.1 , 

1x 1.004988 , 
2r 0.2 , 

  
2x 1.019804  

   0 0,1 0    

   1 0.1,1.004988 0.099504    

   2 0.2,1.01904 0.196116    

       3

0.1
x 1.019804 23 0.196116 16 0.099504 5 0 1.044126

12
        

n 1:   4 3 3 2 1

h
x x 23 16 5

12
       

  
1r 0.1 , 

1x 1.004988 , 
2r 0.2 , 

2x 1.019804  

  3r 0.3 , 3x 1.044126  

   1 0.1,1.004988 0.099504    

    2 0.2,1.019804 0.196116    
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 3 0.3,1.044126 0.287322    

     4

0.1
x 1.044126 23 0.287322 16 0.196116 5 0.099504 1.077193

12
        

The result of the Adams-Bashforth three-step method is displayed in TABLE 11. 

 

Table.11: Adams-Bashforth three-step explicit method for Example 2 

r x(r) Exact solution Error 

0.0 1.000000 1.000000 0.000000 

0.1 1.004988 1.004988 0.000000 

0.2 1.019804 1.019804 0.000000 

0.3 1.044126 1.044031 0.000095 

0.4 1.077193 1.077033 0.000160 

 

Adams-Bashforth four-step explicit method for Example 2 

Using equation (27)   n 4 n 3 n 3 n 2 n 1 n

h
x x 55 59 37 9

24
             

n 0 :   4 3 3 2 1 0

h
x x 55 59 37 9

24
         

  
0r 0 , 

0x 1 , 
1r 0.1 , 

1x 1.004988 , 
2r 0.2 , 

  
2x 1.019804 , 

3r 0.3 , 
3x 1.044031 , 

   0 0,1 0    

   1 0.1,1.004988 0.099504    

   2 0.2,1.019804 0.196116    

  3 0.3,1.044031 0.287348    

       4

0.1
x 1.044031 55 0.287348 59 0.196116 37 0.099504 9 0 1.077010

24
         

The result of the Adams-Bashforth four-step method is displayed in TABLE 12. 

 

Table.12: Adams-Bashforth four-step explicit method for Example 2 

R x(r) Exact solution Error 

0.0 1.000000 1.000000 0.000000 

0.1 1.004988 1.004988 0.000000 

0.2 1.019804 1.019804 0.000000 

0.3 1.044031 1.044031 0.000000 

0.4 1.077010 1.077033 0.000023 

 

III. CONCLUSION 

In this study, it is seen that the multistep methods are derived using Taylor series expansion and numerical integration. The 

numerical integration approach uses the interpolatory polynomial which is determined by some data points to approximate 

the solution to the differential equations.Here, we employed different single-step and multistep schemes in solving non-stiff 

initial value problems of ordinary differential equations. We found out that,unlike the single -step methods, the multistep 

methods attempt to gain efficiency by using information from all previously computed steps to compute the next solution 

value. From the results of our numerical examples, it is established that the multistep methods, though involving more 

computational effort, clearly show superiority in terms of accuracy compared to the single-step methods.   The linear 

multistep methods being discussedalso show stability, and hence ensure convergence.Consistency is seen to hold for the 

multistep methods since they have orders that are greater than or equal to 1 (i.e. 1  ). 
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