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Abstract— Of concern in this work is the derivation and implementation ofthe multistep methods through Taylor’s expansion
and numerical integration. For the Taylor’s expansion method, the series is truncated after some terms to give the needed
approximations which allows for the necessary substitutions for the derivatives to be evaluated on the differential equations.
For the numerical integration technique, an interpolating polynomial that is determined by some data points replaces the
differential equation function and it is integrated over a specified interval. The methods show that they are only convergent if
and only if they are consistent and stable. In our numerical examples, the methods are applied on non-stiff initial value
problems of first-order ordinary differential equations, where it is established that the multistep methods show superiority
over the single-step methods in terms of robustness, efficiency, stability and accuracy, the only setback being that the multi-
step methods require more computational effort than the single-step methods.

Keywords— linear multi-step method; numerical solution; ordinary differential equation; initial value problem; stability;
convergence.

I INTRODUCTION
Linear multistep methods (LMMs) are very popular for solving initial value problems (IVPs) of ordinary differential
equations (ODEs). They are also applied to solve higher order ODEs. LMMs are not self-starting hence, need starting values
from single-step methods like Euler’s method and Runge-Kutta family of methods.

The general k-step LMM s as given by Lambert [1]
Kk Kk
2% =Y Bio., @)
j=0 j=0

where «; and f; are uniquely determined and o, + 5, #0, o, =1 . The LMM in Equation (1) generates discrete schemes

which are used to solve first-order ODEs. Other researchers have introduced the continuous LMM using the continuous
collocation and interpolation approach leading to the development of the continuous LMMs of the form

y(t):Zaj(t)ij :hzﬂj(t)¢n+j @)

where «; and B; are expressed as continuous functions of x and are at least differentiable once [2].

According to [3], the existing methods of deriving the LMMs in discrete form include the interpolation approach, numerical
integration, Taylor series expansion and through the determination of the order of LMM. Continuous collocation and
interpolation technique are also used for the derivation of LMMs, block methods and hybrid methods.

In this study, we present the general multistep method, some of its different types and examine their characteristics. In lig ht
of this, we investigate the stability and convergence of these methods, compare the multistep methods with the single -step
methods in operational time, accuracy and user-friendliness via some numerical examples.

In practice, only a few of the initial value differential equations that originate fromthe study of physical phenomena have
exact solutions. The introduction however, of the multistep methods as numerical techniques is used in finding solutions to
problems that have known exact solutions and in extension handle those problems whose exact solutions are not known. We
shall limit this study to only non-stiff initial value problems of first-order ordinary differential equations.
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The Linear Multistep Methods
The general linear multistep method is given by

k k
Zajxn+j = hZﬂjq)nJrj (3)
j=0 j=0
where the a; and f; are constants, whereas ¢, =0 and both ¢, and £, are not zero. Since (3) can be multiplied on both

sides by the same constant without altering the relationship, the coefficients «; and S, are taken arbitrarily to the extent ofa

constant multiplier. In this work however, we will assume that ¢, =1.If g =0, the equation (3) is explicit otherwise it is
implicit  [4].

The Adams methods
These are the most important linear multistep methods for non-stiff initial value problems. It is the class of multistep
methods (3) with ¢, =1, ¢, =-1and «; =0, j=0,1,2,---k -2 . If equation (3) is given by

k-1
Xn+k = Xn+k—1 + hZﬂj(pmj ' (4)
j=0
then we have the Adams-Bashforth methods. And, if it is given by
k
Xn+k = Xn+k—1 + hZﬂj(omj ' (5)
j=0

then we have the Adams-Moulton methods [5].

Predictor-Corrector (P-C) method

The multistep methods are often implemented in a ‘predictor-corrector’ form. In this way, a preliminary calculation is done
using the explicit form of the multistep method then corrected using the implicit form of the multistep method. This is done
by two calculations of the function ¢ at each step of this computation.

Order of linear multistep methods
We can associate the linear multistep method (3) with the linear difference operator 8, defined by

H[X(r);h]:i[ajx(r+jh)—hﬁjx'(r+jh)], (6)

where x(r) is any arbitrary function that is continuously differentiable on the interval [a,b]. If the operator is allowed to

operate on an arbitrary test function x(r) with as many higher derivatives as we require, we can formally define the order of
the operator and of the associated multistep method without invoking the solution of the initial value problem (4) which may
possess only a first derivative. If we expand the test function x(r+ jh) and its derivative x'(r + jh) as Taylor series about r
and collect terms in (6) we have

O[X(r);h]=Cyx(r)+Chx'(r)+---+Ch'xV(r)+--- @)

where the C, constants [1].

Definition 1 The difference operator (6) and the linear multistep method (3) associated with it are of order o if, in (7),
C,=C,=C,=--=C;=0and C,, #0.
The following formulae for the constants C, in terms of the coefficients «; and /; are given as:
C =g +a,+a,+ -+, 8)
C=ay+2a,+3a,++kay (S + B+ S+ + ) ©)]
1
(q_l)!(ﬂl +2q71ﬂ2 +"'+kqilﬂk )

Cq:$(al+2qa2+---+kqak— (10)

for q=2,3,---[1].
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. CHARACTERISTICS OF THE METHODS
With the number of approximations involved during computations using the multistep methods, the problem of consistency,
stability and convergence call for discussion. The approximation in a one-step method depends directly on previous

approximations alone, while the multistep method uses at least two of the previous approximations.

Consistency
The linear multistep method (3) is consistent if it has order & >1[4]. From (8), (9) and (10), it follows that the method is
consistent if and only if the following two conditions hold.

Zaj =0, 11)
2 e =25 (12)

(1]
We shall subsequently consider the limits as h—0, n—>o and nh —r—a remaining fixed.
Let x, tend to x(r) in the limit, that is x, — x(r). Since k is fixed, we have that x,; — x(r), for j=0,1,2,--- k , or

X(r)=Xn+j+Tj,n(h)! j:0,1|21'”ik
where limz; (h)=0, j=0,1,2,---k [1].

Hence, we have
Kk k k
Z:c):jx(r)=2c)zjxn+j +Zajz'j_n(h),
j=0 j=0 j=0
or replacing the first term on the right hand side of the equation by the termon the right hand side of (3) we have
k k k
X(r)Za]— = hZﬂjgonﬂ- +Zajrjvn(h).
j=0 j=0 j=0

In the limit, both terms on the right hand side vanish. Therefore, the left hand side becomes zero. The left hand side is not in
general equal to zero, so we conclude that Z‘;:Oaj =0. The above argument holds if we merely assume that {x(r)} tends to

some function x(r).
Condition (12) ensures that the function x(r) does in fact satisfy the differential equation. For, under the limiting process,

Xouj = X

Dl T x(r), for j=1,2,-- kK,
i —X'(r) or j

or, X”*J-_Xn = jhx’(r)—i_jhgoj,n(h)l for j:1,2,"',k,

where lim ¢; (h)=0.Hence,

k

[ k k
Zajxnﬂ. —Zajxn = hz jajx’(r)+2ajrjyn(h)
0 j=0 j=0

i=0 i=
or

k k k k
hZﬁj¢n+j _anaj = hX'(I’)z Ja; +hz Jajp;,(h).
j=0 j=0 j=0 i—0
Since " @ =0, we have, on dividing through by h,
k k . k .
Zﬂjq)nﬂ = X’(r)z Jaj +Z Jajgoj,n(h)' .
j=0 j=0 j=0
Under the limiting process, ¢,.; = @(r,X(r)), and, in the limit,

AT B =X(N)Y .

k
Thus x(r) satisfies the differential equation (4) if and only if Z?:O Ja; =Zﬂj . This shows that if the sequence {xn}
j=0

converges to the solution of the initial value problem (4) then the conditions (11) and (12) must hold [1].
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Stability
Let us introduce the first and second characteristic polynomials of the multistep method (3), defined as p(4) and o( 1)

k k
respectively, where p(1)=> a4’ and o(1)=)_ B4’

i=0 =0

6]

It follows from conditions (11) and (12) that the linear multistep method is consistent if and only if p(1)=0 and
p'(1)=0(1)[1]. The stability of the multistep technique with respect to round-off error is clearly dictated by the magnitude

of the zeros of the first polynomial above. However, the methods we have discussed in this work are zero -stable by virtue of
their characteristics. The following are motivated by the types of zeros of the characteristic polynomial.

Theorem 3.1
Let 4, 4,, ..., 4 denote the roots (real or complex), which may not necessarily be distinct, of the characteristic equation

associated with the multistep difference method. If |ﬂn| <1, for n=1,2,---k and all the roots with absolute value equal to 1
are simple roots, then the difference method satisfies the root condition [7].

Theorem 3.2

i) The methods that satisfy the root condition with 4 =1 as the only root of the characteristic equation with magnitude
equal to 1 are said to be strongly stable. That is, the roots lie on the unit disc.

i) If a method satisfies the root condition and has more than one distinct root with magnitude equal to 1, it is said to be
weakly stable.

iii) If a method does not satisfy the root condition, it is said to be unstable. A multistep method is said to be stable if and

only if it satisfies the root condition [7].

Conwergence
One basic property that is demanded of an acceptable linear multistep technique is the convergence of the solution {xn} that

is generated by the method, in some sense, to the theoretical solution x(r) as the step-size h goes to zero. A linear multistep

method is convergent if and only if it is consistent and stable, otherwise it is not convergent [8]. If a method is consistent but
not stable, then it is not convergent. Also, if a method is stable but not consistent then it is not convergent.

Obtaining Starting Values
A multistep method is not self-starting, that is, a k-step multistep scheme requires some k previous values X,,X;,X, ., ;.-
These k values that are needed to start the application of the multistep method are gotten by a single step method such as

Taylor series method, Euler method or Runge-Kutta method. The starting method should be of the same or even lower order
than the order of the multistep method itself.

Taylor series method
Let us consider the initial value problem

X'=g(r,x), =a. (13)
Let us consider a numerical solution to (13) above using a k-step multistep method of order & . We require that the starting
values x;, i=1,2,---k =1 should be calculated to an accuracy that is at least as high as the accuracy of the multistep method

itself. That is, we require that x, —x(r,)=0(h°™"), i=12,---k -1,
If enough partial derivatives of ¢(r,x) with respect to r and x exist, then we will use a truncated Taylor series to estimate
X; to any required degree of accuracy [9]. Thus, we have

2 3

K =X+ BK(E )+ () X1 ) O™, 19

for i=1,2,--- k-1, The derivatives in (14) are evaluated by successively differentiating the differential equation. Thus,
X( o )= Xy
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X'(r)=¢(r,x)
X"(r):6_¢;+6_(px,_6_¢)+ %9

or oXx or ¢6x
2 2 2 2
g Op , 09, 0pp (8_50)_

X"(r)=—+2
(= "2 5o 2 o arax o

This approach is theoretically flawless. Nevertheless, the evaluations of the total derivatives can be excessively tedious and
may not be adopted for an efficient computation.

Euler method
This is another method that can be employed to generate all the needed starting values for a linear multistep method.
Consider the equation

X'=¢@(r,x), asr<b, x(a)=«.

Let us suppose that the solution to the initial value problem (15) above has two continuous derivatives on the interval [a,b] ,
so that foreach i=1,2,---,N -1, we have

(ri+1_ri)

TR

forsome & in(r,r,,,) .Since h=r_, —r, ,we have

i+ i

Xi+1 :X(ri )+(ri+1_ri)x’(ri)+

2

X, = (5 )+ hx(r )%x"(g:)

and, since x(r) satisfies our differential equation, we have
2

Ko = X0+ (1) + D4,
By deleting the remainder term, the Euler method becomes
X, =0
X1 =% +he(r,%),
foreach i=1,2,---,N-1.
The Euler method is gotten when the Taylor series method above is of order 6 =1. The simplicity of this method may be
used to illustrate the techniques we intend to adopt in starting the multistep methods.

Runge-Kutta method
This method can also be applied to generate starting values for any multistep method.
We consider the equation

M
X(r+h)=x(r)+h> wk, (15)
s=1
where
s—1
k,=(r,x), ko =p(r+ahx+h> gk, for s=23, M [1].
i=1

We call this an M-order Runge-Kutta method and it involves M function evaluations at each step. Each k,, k=12,---M ,

may be interpreted as an approximation to the derivative x'(r).

The objective is to choose w,, a and g, so that the coefficients of h', i=12,---,M | in equation (14) are identical with

those of the equation (15). That is, the method must compare with the Taylor series method after its expansion. The higher
order derivatives of the Taylor series expansion is given by

X'=¢

X'= @ +oX =9, +pp,

X" =0+ 200, + 00 + 0,0, + 09,
and so on.
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We note that the Runge-Kutta methods are not unique due to the manner in which they are derived. However, any Runge-
Kutta methods of the same order are equivalent.

Runge-Kutta method of order two
This method uses two evaluations and it is given by
X, =% +hwk +hwk,,

where k, =¢(r,x), Kk, =o(r +%h,xi +%hkl)

Runge-Kutta method of order four
This method uses four evaluations. It is given by

Xy =X, +%(k1 + 2k, + 2k, +K,, (16)
Where k, =he(r;,x; )

1 1
K, =ho(f +nx +hk,)

h h
k; =hg(r, +E’Xi +§k2)

k, =he(r, +h,x +k;)
[10].
We note however, that this is not unique. The Runge-Kutta method of order four shall be used in obtaining the starting values
for the implementation of the multistep methods adopted in this work.

Derivations
Any specific linear multistep may be derived in a number of different ways. We shall consider a selection of different
approaches which cast some light on the nature of the approximation involved.

Derivation through Taylor expansions
Euler method

Let us consider the Taylor series expansion for x(r, +h) about r,,

2

x(rn+h):x(rn)+hx’(rn)+%x”(rn)+-~ 17)

If we truncate this expansion after two terms and substitute for x’(r) fromthe differential equation (4), we have
X(rn +h): X(rn )+h¢(rn'x(rn ))l

. h? .
and the truncation error is ?x"(fn) for & in(r,r.,).

If x(r,) and x(r, +h) arereplaced by x, and x_,, we get

n+1?

Xn+1 = Xn + hwn ’ (18)
which is an explicit linear one-step method [11]. This shall be used in solving the numerical examples in this work.

Mid-point rule
Let us consider the Taylor series expansions for x(r, +h) and x(r,—h) about r, Thus,

2 3
X(r, +h)=x(r, )+hx’(rn)+%x”(rn)+%x"”(rn)+m

3

2
X(r, —h) = X(r, )~ hx(r, )+ x(r, )= e, )+
2! 3!
Subtracting, we have
3
X(r, +h)—x(r, —h)=2hx'(r, )+%x’”(rn )+

Replacing x(r, +h) and x(r,—h) by x.,, and X, _,,we have X, —x,_, =2hg,.
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This can be brought into the standard form of the linear multistep method (13), after replacing n by n+1, as
KXo =X, = 2h§0n+1 (19)

Its truncation error is i%he‘x’”( &)1l

This is the mid-point rule and it shall be used in solving the numerical examples presented in this work.

The trapezoidal rule
If we wish to find the most accurate one-step implicit method x_ ., +a,x, =h( S¢,., + B,¢, ), We write down the associated

approximate relationship
X(rn+h)+aox(rn)zh[ﬁlx,(rn—i_h)_*—ﬂox’(rn )] (20)
and choose ¢, B, and S, so as to make the approximation as accurate as possible.

The following expansions are used:
2
X(r, +h)=x(r, )+hx'(r, )+%x"(rn )+---

2
X'(r,+h)=x'(r,)+hx"(r, )+%X”I(rn )+
Substituting these two equations into (20) and collecting the terms on the left-hand side gives

C,X(r,)+C,hx'(r,)+C,h*X"(r, )+ C,h*X"(r, ) +--- =0,

where
C, =1l+a,,
Clzl_ﬁl_ﬁl)’
1
szg_ﬂv
1 1
C,=——=5,.
=55k

Thus, in order to make the approximation in equation (20) as accurate as possible, we choose o, =-1, B, = f :%. The

1 , . :
value of C, then becomes —E.The linear multistep method is now

h
Xn+1 +xn :E(q)nﬂ +(pn )

. . . i . 1
This is the trapezoidal rule and its local truncation error is iE h®x"( &) [4].

Derivation through numerical integration
This technique can be used to derive only a subclass of linear multistep methods consisting of those methods for which
a =+1, a;=-1, ,=0,i=012,---j-1,j+1, j=Kk.To start the derivation of any multistep method, we should note

that the solution of the initial value problem given as
X'=¢(r,x), as<r<b, x(a)=e«,

if integrated over [r,,r. ., ], has the property that

X(h )= X(1,) = [ X(r)dr = [ g(r x(r))dr

Consequently,

X(T )= X(1) = [ " o(r,x(r))dr . (21)
We will integrate some interpolating polynomial P(r) to ¢(r,x(r)) which is determined by some previous data points that
were obtained. Then, equation (21) becomes

X()=X(r) = [ P(r)dr )
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Simpson’s rule
Suppose we want to derive a two-step method, we consider the identity

X(r,;)=x(1r,)= [ x/(r)dr. 23

Using the differential equation (4), we can replace x’ by ¢(r,x) in the integrand. The only available data for the

approximate evaluation of the integral will be the values ¢ , ¢, ., and ¢ ,.Let P(r) be the unique polynomial of second
degree passing through the three points (r,,¢,), (I.,;,@.,) and (r,.,,¢,., ) By the Newton-Gregory forward interpolating
formula,

P(r)=P(r, +sh) =g, +54g, +S(52‘|1)A2

We now make the approximation
[ ’(r)dr~j P(r)dr—J' [0, +s40,+ Ls(s—1)0,1hds

=h[2¢, +24¢, +%A2gon 1

If we expand Ag, and A%@, in terms of ¢, .., ¢,., and substitute in (23), we have
h
Kpiz =% = § [¢n+2 +4¢n+1 + o, ] :

Then, the truncation error becomes + hsx‘s)(g ).

This is the Simpson’s rule and it is the most accurate implicit linear two-step method [1].

Adams-Bashforth methods
Though any form of the interpolating polynomials could be used for the derivations, the Newton backward -difference
formula will be used for the purpose of convenience. For us to derive an explicit k-step Adams-Bashforth method, we now

form the backward-difference  polynomial R _,(r) through  (r,,e(r,.x(r,))), (r_.e(r . x(r.)) ., -,

(F X X)) - Since B, (r) is an interpolating polynomial of degree k —1, then for some &, in (r, r

n+1-k? n)7

we have

p(rx(r)=P,(r)+£ (r=r)(r=r)(r=r..).

Introducing the substitution r =r, +sh, and with dr =hds into B,_, and with the error term, it implies that

(k’(fn, X(£,))

I ptrx(rar =" ¥ (-1 Gﬂvm(p( r,.x(r, ))dr

- (k) ,
#f D (o, (o,

k-1 k+1

Vmco(rn,X(rn))h(—l)mj( ]ds+h js(s+1) (s+k=1)p™ (&, ,X(&,))ds .

m=0

s
The integrals (-1)" _[ ( st for various values of m can be evaluated easily as displayed below.

m
For,
m=1:(-1)"] [?jds:%
m-2:ar [ -
m=1 (—l)"“_[ [;nsjds=§
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. mptf—S),. 251
m=1:(-1) jo(mjds_%

m=1: (—1)mjol(:jds :%

As a consequence of these evaluations,

I:”w(r,x(r))dr = h[(/’( . X(r, ))+%qu( r X(T, ))+%szﬂ( o X(T, ))+“}

Fo (s 1) (541K )4, (&, s (24

The coefficient s(s+1)(s+2)---(s+k—1) does not change sign on the interval [0,1] [12]. The weighted mean value

theorem for integrals can be used to deduce that for a number 4 , where r, , < <r, ,, the error termin equation (24)

+17

becomes

h;:l J.Ols(s"'l)m(s+1_k)¢(k)(§n’x(%€n ))ds = hk+1gok(,|t(lr;,x(ﬂn ) J.olS(S+1)---(s+k—1)ds

or the error term can be written as

hk+l(p(k)(:un ,X( H, ))(_1)m J-Ol[_ks) ds

[71
Adams-Bashforth two-step explicit method:

X(r.,)~X(r, )+ h[o(r, X(r, »+%w<rn,x< ™
—X(r, )+ ho(r, (. ))+g[(p< X )=, X(r, )]

= X1 )+ 2 1301, (0, )= (0, X1 )

Consequently, the explicit Adams-Bashforth two-step method is:
X =0, X =0

h
Xner = %, +§[3(0(|’n,X( I ))_(o(rn—l’x( () ))]
This can be taken into the standard form of the linear multistep method, after replacing n by n+1. Thus,
h
X2 = Xni +§ [3¢n+1 —® ] (25)
The local truncation error is

5 m
7'-n+1(h):EX (:un )h2

for some 4, € (r,_,.r.,)[7]
This method shall be used in solving the numerical examples in this work.

Adams-Bashforth three-step explicit method:
X1y ) x(1r,) ~ h[fp( () 4V, X0 )+ SVl »}
- x(r, )+h[<o( 0 )+ S (00, X8, ) =31, )

ol X8 )= 2000, X5 ) ol (1)

= (0, 42300, X(1, )= 1601, X1, )+ 50, X, )
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Consequently, the Adams-Bashforth three-step explicit method is

X =0, X =0, X=0a,
X ., =X +l—hz[23(p( NoX ) —169(1, X, )+50(r ;% ,)],

for n=2,3,---,N-1.
Replacing n by n+2, the standard form becomes

Xn+3 = Xn+2 +%[23¢n+2 _16¢n+1 + 5¢n ] " (26)
Adgain, the local truncation error can be shown to be
3
fnﬂ(h):gx(“(ﬂn I, for p, € (r 5507

Results from this method shall be displayed along with the results of the exact solutions for our numerical examples.

Adams-Bashforth four-step explicit method:
X =0, X =0, X =0y, X3=04

X1 = X, +2_Z[55¢( X, )_59¢( Mo X0 )+ 37¢( 21 X2 )_9¢( rn—3 'Xn—3 )] )

where n=3,4,--- N -1,
Replacing n by n+3, we have

Xn+4 = Xn+3 +%[55¢n+3 _59¢n+2 +37¢n+1 —Q(Dn] . (27)
The local truncation error is
251 (s 4
rml(h):ﬁx (g, )", forsome u, e (r, 5,r,.,)[7]

Results from this method shall be shown along with the results of the exact solutions for the numerical examples.

Adams-Bashforth five-step explicit method
Xo =gy Xy =y Xo =Cy, X3 =gy X, =0
.y +L{1901¢( r,X,)—2774¢(r, |, X, ,)+2616¢(r, ,, X, ,)—
M 720 12719( 1, 4%, 5 ) +2510(T, X, )

where n=4,5,---,N -1,
Replacing n by n+4,we have

X =X+ %0 [1901p,,, —2774¢, , + 2616, , —1271p, , + 251¢, |.

n+5 = n+4
7

The local truncation error is

95
Tn+1(h)=ﬁx(6)(ﬂn )h®, for some u, e (r_,.r.)[7]

Adams-Moulton method

To derive Adams-Moulton implicit k-step method, we can form the backward-difference polynomial P (r) through

(ro(r XCE L)), (ro(r (e )) oo (N X Ty o X(T 0 ))) - Since P(r) is an interpolating polynomial of degree

k, then forsome &, in (r,,, ,,F., ), we have,

(p(k+1)(§n ’X( gn ))
(k+1)!

Introducing the substitution r =r, +sh, and with dr =hds into P, and with the error term, it implies that

(D(r,X(r): Pk(r)"" (r_rn+1)(r_rn )'“(r_rnJrl—k)'

[ etrorar = [ -1y (ﬂvm("( S
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L 050 X))

(r_rn+1 )(r_rn )”'(r_rml—k )dr

n (k+1)!
* " .[ol(s_l)s(”l)'"(s+k—1)(/?(“”(5n X(&,))ds.

(k+1)!

—=S

The integrals (-1)" I:( . )ds for various values of m can be evaluated easily as displayed below:

For,

As a consequence of these evaluations,

I X =] 0 (0, ) =5 V0l X )5V 0L, X )

hk+2

+—(k 1) Iol(s—l)s(s+1)---(s+1—k)(p“‘*“(afn X(&,))ds.

The coefficient (s—1)s(s+1)(s+2)---(s+k—1) does not change sign on the interval [0,1][12]. The weighted mean value

theorem for integrals can be used to deduce that for a number x_ , where r , , < <r, ., the error termin equation above

becomes
hk+2

(k+1)!

[ (s=1)s(s+1)-(s+1-k)p (&, X(&, )ds

_h(k+2)¢(k+1)(ﬂn,x(ﬂn )) ) ) - )
B (k+1)! J.o(s 1)s(s+1)---(s+k—1)ds,

or the error term can be written as
k+2  (k+1) _qym ! =S

h 2"ty X4ty ))(-1) jo[ ) ]ds
[13].
Adams-Moulton two-step implicit method:

X =0, X, =a,

h
X1 =X, +E|:5§D( M X )+8¢( X, )_(p(rn X )]

where n=1,2,---, N -1.
To put this in standard form, we replace n by n+1. Thus,

h
Xorz = Xosa +E|:5(p( M2 Xns2 )+ 8(p( M1 X )_¢)(rn 1Xn )]

The local truncation error is
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.., (h)=— ” X(4)(ﬂn )h?, for some u e (r_,,r.,)[7]

Adams-Moulton three-step method:
XO =04, X1 =a1,X2 =0,,

h
Xn+1:Xn+a[9§0( n+1? n+1)+19(/)(rn1xn) 5(”( -1 n 1)+¢( -2 n 2)]’

for n=2,3,---,N-1.
Replacing n by n+2,we have

h
Xn+3 = Xn+2 +z[9§0( r-n-¢-3 'Xn+3 )+ 19(0( rn-¢-2 ’Xn+2 )_ 5(/)( n+1? n+1 )+ 50( n?’ n )]
The local truncation is

19
Zha(h)=-—5

0 X (", for g e (1,0, ) [7].

Adams-Bashforth four-step explicit method:
Xo =0y X =0 Xy =0 s Xg =0y,

Xp =%, +—[251¢( 11Xy ) +6460(1, X, )~ 2640(T X, 1) +1069(T, X, ,)~199(r, ;.X, ;) ], where

n=34,--,N-1.
Replacing n by n+3, we have

X 4:X |:251¢)( n+41 n+4)+646¢)( n+3? n+3) 264¢)( n+21 n+2)+106§0( n+1? n+1) 19¢)(n' n):|

n+

2720
The local truncation error is

Tha(h) =~ esox(a)(un h*, for some 4, € (1, 5,1,.,) [7]

Numerical Examples
We will now solve the following problems using some of the methods discussed in this work and the results displayed in
tables along with the results of the corresponding exact solutions.

Examplel: Given that

X'=x-r?, x(0)=1,
we obtain the values of X for r=0.1,0.2,0.3,0.4 by the Euler method, Runge-Kutta method of order four, mid-point rule,
Adams-Bashforth two-step explicit method, Adams-Bashforth three-step explicit method and Adams-Bashforth four-step
explicit method and then compare the result with the exact solution x(r)=r?+2r+2—e" to obtain the error.

BExample 2: We solve the initial value problem

xx'=r, x(0)=1, 0<r<04,

using the Euler method, Runge-Kutta method of order four, mid-point rule, Adams-Bashforth two-step explicit method,
Adams-Bashforth three-step explicit method and Adams-Bashforth four-step explicit method with step size h=0.1 and then

compare the results with the exact solution x(r)=~r’>+1.

Euler method for Example 1
Using equation (18) x.,, =X, +hg,,
n=0: x =X +hg

=0, x=1

o =¢(0,1)=1
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X =1+0.1x1=11
n=1: X, =X, +he,

r=01, x, =11

@, =¢(0.1,1.1)=1.09

X, =1+0.1x1.09 =1.209
n=2: X, =X, +he,

r,=02, x,=1209

», =¢(0.2,1.209)=1.169

X; =1.209+0.1x1.169 = 1.3259
n=3: X, = X; +he,

r,=03, x,=1.3259

@, =¢(0.3,1.3259) =1.2359

X, =1.3259+0.1x1.2359 = 1.449949
The result of the Euler method is displayed in TABLEL.

Table.1: Euler’s rule for Example 1

r X(r) Bxact solution Error
0.0 1.000000 1.000000 0.000000
0.1 1.100000 1.104829 0.004829
0.2 1.209000 1.218597 0.009597
0.3 1.325900 1.340141 0.014241
04 1.449949 1.468175 0.018226

Runge-Kutta method of order four for Example 1
. . 1
Using equation (16) X,,, = X, +g(kl +2k, + 2k, +Kk, ),

where k, =he(r,,X,),

K, = hgo(rn +g,xn +%li
k, = hgo[rn +2,xn +%k2j
k, =he(r, +h,x, +k;)

n=0: =0, %=1
k, =0.1x¢(0,1)
?(0,1)=1
k, =0.1x1=0.1
k, =0.1x (0.05,1.05)
¢(0.05,1.05) =0.10475
k, =0.1x0.10475 = 0.10475
k, =0.1x(0.05,1.052375)
(0(0.05,1.052375) =1.049875
k, =0.1x1.049875 =0.1049875
Kk, =0.1x (0.1,1.1049875)
(p(0.1,1.1049875) =1.0949875
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k, =0.1x1.0949875 =0.10949875 x, =1+ %[O.l+ 2 (0.10475) +2 (0.1049875) + 0.10949875} =1.104829

n=1: =01, x =1.104829
k, =0.1x¢(0.1,1.104829)
¢(0.1,1.104829) = 1.094829
k, =0.1x1.104829 =0.109483
k, =0.1x (0.15,1.159571)
(p(0.15,1.l59571) =1.137071
k, =0.1x1.137071=0.113707
k, =0.1x(0.15,1.161683)
(0(0.15,1.161183) =1.139183
k; =0.1x1.139183 =0.113918
k, =0.1x(0.2,1.218747)
(p(0.2,1.218747) =1.178747
k, =0.1x1.178747 =0.117875

X, =1.104829 +%[0.109483 +2 (0.113707) +2 (0.113918) + 0.117875} =1.218597

n=2: r,=02, x,=1218597
k, =0.1x¢(0.2,1.218597)
¢(0.2,1.218597) =1.178597
k, =0.1x1.178597 =0.117860
k, =0.1x¢(0.25,1.277527)
¢(0.25,1.277527) = 1.215027
k, =0.1x1.215027 =0.121503
ky =0.1x¢(0.25,1.279349)
¢(0.25,1.279349) = 1.216849
k, =0.1x1.216849 =0.121685
k, =0.1x¢(0.3,1.340282)
¢(0.3,1.340282) = 1.250282
k, =0.1x1.250282 = 0.125028

X, =1.218597 + 61[0.117860 +2(0.121503)+2(0.121685) +0.125028J =1.340141
n=3: r,=03, x =1340141
k, =0.1x¢(0.3,1.340141)

¢(0.3,1.340141) = 1.250141
k, =0.1x1.250141 = 0.125014
k, =0.1x¢(0.35,1.402648)
¢(0.35,1.402648) = 1.280148
k, =0.1x1.280148 = 0.128015
k, =0.1x ¢(0.35,1.404149)
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¢(0.35,1.404149) = 1.281649
k, =0.1x1.281649 =0.128165
k, =0.1x(0.4,1.468306 )
¢(0.4,1.468306 ) = 1.308306
k, =0.1x1.308306 =0.130831

X, =1.340141 +%[0.125014 +2 (0.128015) +2 (0.128165) +0.130831] =1.468175

The result of the Runge-Kutta method is displayed on TABLE2.

Table.2: Runge-Kutta method of order four for Example 1

r x(r) Bxact solution Error
0.0 1.000000 1.000000 0.000000
0.1 1.104829 1.104829 0.000000
0.2 1.218597 1.218597 0.000000
0.3 1.340141 1.340141 0.000000
04 1.468175 1.468175 0.000000

Mid-point rule for Example 1
Using equation (19) x,., =X, +2he,.,,

n=0: X, =X +2hg,
=0, X=1, =01, x =1.104829
@, =¢(0.1,1.104829) = 1.094829
X, =1+2x0.1x1.094829 = 1.218966
n=1: x,=x +2hg,
r,=02, x,=1218966
@, =¢(0.2,1.218966 ) = 1.178966
X, =1.104829 4+ 2x0.1x1.178966 = 1.340622
n=2: X, =X,+2he,
r, =03, x, =1.340622
@, = 9(0.3,1.340622) = 1.250622

X, =1.218966 +2x0.1x1.250622 =1.6909
The result of the mid-point rule is displayed on TABLE 3.

Table.3. Mid-point rule for Example 1

r x(r) BExact solution Error
0.0 1.000000 1.000000 0.000000
01 1.104829 1.104829 0.000000
0.2 1.218966 1.218597 0.000369
0.3 1.340622 1.340141 0.000481
04 1.469090 1.468175 0.000915

Adams-Bashforth two-step explicit method for Example 1

) ) h
Using equation (25) X.., =X,., +§[3(ﬂn+1 -],

h
n=0: X =Xl+§[3(pl—(oo]
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=0, x =1, r=01, x =1.104829
=p(0,1)=1
= ¢(0.1,1.104829) = 1.094829

=1.104829 +—[3 (1.094829)-1]=1.219053

n=1: X3=X2+2[3¢2—§01]
=01, x =1104829, r,=02, x,=1.219053
= ¢7(0.l,l.104829) =1.094829
¢, =(0.2,1.219053) = 1179053

X, = 1.219053+%[3(1.179053)—1.094829] =1.341170
h
n=2: X, =X +E[3¢3 =
r,=02, x,=1219053 , r, =0.3, x, =1.341170

= q)(0.2,1.219053) =1.179053
=(0.3,1.341170) = 1.251170

X, =1.341170 +—[3 (1.251170)-1.179053 | = 1.469893

The result of the Adams-Bashforth two-step method is displayed in TABLE 4.

Table.4: Adams-Bashforth two-step method for Example 1

r x(r) Exact solution Error
0.0 1.000000 1.000000 0.000000
0.1 1.104829 1.104829 0.000000
0.2 1.219053 1.218597 0.000456
0.3 1.341170 1.340141 0.001029
04 1.469893 1.468175 0.001718

Adams-Bashforth three-step explicit method for Example 1

h
USing equation (26) Xn+3 = Xn+2 +E[23¢n+2 _16¢)n+1 +5¢n]

n=0: X=X, +1h [23p, —16¢, +5¢,]

=0, x, =1, r,=01, x, =1.104829 , r, =0.2,
1.218597

¢(0.1)=1

¢(0.1,1.104829) = 1.094829
= ¢(0.2,1.218597 ) = 1178597

X, =1.218597 +—[23 (1.178597)—16 (1.094829)+5(1 ] 1.340184

h
n=1: X4:X3+E[23(/73—16(/72+5(01]

rr=01, x =1104829 , r, =0.2, x, =1.218597
r, =03, x, =1.340141
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The result of the Adams-Bashforth three-step explicit method is displayed in TABLE 5.

= (0.1,1.104829) = 1.094829
= (0.2,1.218597) = 1178597
= (0.3,1.340184) = 1.250184

X, =1.340184 + —[23 1 250184) 16 (1 178597)+ 5(1 094829 ] 1.468274

Table.5: Adams-Bashforth three-step explicit method for Example 1

r x(r) Bxact solution Error
0.0 1.000000 1.000000 0.000000
0.1 1.104829 1.104829 0.000000
0.2 1.218597 1.218597 0.000000
0.3 1.340184 1.340141 0.000043
04 1.468274 1.468175 0.000099
Adams-Bashforth four-step explicit method for Example 1
Using equation (27) X,., =X, 5 +%[55(pn+3 -590,., +37¢,., —99, ]
h
n=0: X, =X, 2t od [55¢, —59¢, +37¢, —9¢, |
=0, X, =1,r,=01, x, =1.104829 , r, =0.2,
=1.218597, r, =0.3, x, =1.340141 ,
(O 11. 104829) 1.094829
, =¢(0.2,1.218597 ) =1.178597
, =¢(0.3,1.340141) = 1.250141
X, =1. 340141+—[55 (1.250141)—59(1.178597 ) +37(1.094829) -9 (1) | = 1.468179.
The result of the Adams-Bashforth four-step explicit method is displayed in TABLE 6.
Table.6: Adams-Bashforth four-step explicit method for Example 1
r x(r) Bxact solution Error
0.0 1.000000 1.000000 0.000000
0.1 1.104829 1.104829 0.000000
0.2 1.218597 1.218597 0.000000
0.3 1.340141 1.340141 0.000000
04 1.468179 1.468175 0.000004

Euler method for Example 2
Using equation (18)

n=0:

X, = X, +he,
=0, x=1
=¢(0,1)=0
X =1+01x0=1
X, =X, +he,
r=01, x =1
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¢ =¢(0.1,1)=0.1

X, =1+0.1x0.1=1.01
n=2: X =X,+heg,

r,b=02, x,=101

@, =¢(0.2,1.01) = 0.198020

X, =1.01+0.1x0.198020 = 1.029802
n=3: X, =X+heg,

r,=03, x,=1.029802

@, = ¢(0.3,1.029802) = 0.291318

X, =1.029802 +0.1x0.291318 = 1.058934

The result of the Euler method is displayed in TABLE 7.

Table.7: Euler’s rule for Example 2

r x(r) Exact solution Error
0.0 1.000000 1.000000 0.000000
0.1 1.000000 1.104988 0.004988
0.2 1.010000 1.019804 0.009804
0.3 1.029802 1.044031 0.014229
04 1.058934 1.077033 0.018099

Runge-Kutta method of order four for Example 2

Using equation (16) x

n+1

=X, +é(kl+2k2 +2k; +k, ),
where k, =he(r,,X,),

h 1
k,=h —, —k
2 W(rn"'z Xn+2 1}

2
k, =he(r, +h,x, +k;)
X =1
k, =0.1x¢(0,1)
¢(0,1)=0
k, =0.1x0 =0
k, =0.1x¢(0.05,1)
(0.05,1)=0.05
k, =0.1x0.05 =0.005
Kk, =0.1x (0.05,1.0025)
(p(0.05,1.0025) =0.049875
k, =0.1x0.049875 =0.004988
Kk, =0.1x(0.1,1.004988)
(0(0.1,1.004988) =0.099504

K, =h¢[rn+n,xn+%k2j

=
Il
o

k, =0.1x0.009950 = 0.009950 X, =1+ % [0+2(0.005)+2(0.004988) +0.009950 | = 1.004988
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n=1: r=01, x =1.004988
k, =0.1x(0.1,1.004988)
¢(0.1,1.004988) = 0.099504
k, =0.1x0.099504 = 0.009950
k, =0.1x(0.15,1.009963)
¢(0.15,1.009963) = 0.148520
k, =0.1x0.148520 = 0.014852
k, =0.1x¢(0.15,1.0112414)
(0.15,1.012414) = 0.148161
ky =0.1x0.148161 = 0.014816
k, =0.1x¢(0.2,1.019804)
¢(0.2,1.019804) =0.196116
k, =0.1x0.196116 = 0.019612

X, =1.04988 + %[0.009950 +2(0.014852) + 2(0.014816) +0.019612 | = 1.019804

n=2: r,=02, x,=1019804
k, =0.1x¢(0.2,1.019804)
¢(0.2,1.019804) =0.196116
k, =0.1x0.196116 =0.019612
k, =0.1x¢(0.25,1.029610)

¢(0.25,1.029610) = 0.242810
k, =0.1x0.242810 = 0.024281
k, =0.1x¢(0.25,1.031945)
¢(0.25,1.031945) = 0.242261
k, =0.1x0.242261 = 0.024226
k, =0.1x¢(0.3,1.044030)
¢(0.3,1.044030) = 0.287348
k, =0.1x0.287348 = 0.028735

X, =1.019804 + % [0.019612 +2(0.024281) + 2(0.024226 ) +0.028735 | = 1.044031

n=3 r,=03, x =1044031
k, =0.1x(0.3,1.044031)
¢(0.3,1.044031) = 0.287348
k, =0.1x0.287348 =0.028735
k, =0.1x¢(0.35,1.058399)
¢(0.35,1.058399) = 0.330688
k, =0.1x0.330688 = 0.033069
k, =0.1x 2(0.35,1.060566 )
¢(0.35,1.060566 ) = 0.330012
k, =0.1x0.330012 = 0.033001
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k, =0.1x¢(0.4,1.077032)
(p(0.4,1.077032) =0.371391
k, =0.1x0.371391=0.037139

X, =1.044031+ % [0.028735 +2(0.033069)+2(0.033001) + 0.037139] =1.077033.

The result of the Runke-Kutta method is displayed in TABLE 8.

Table.8: Runge-Kutta method of order four for Example 2

r x(r) Exact solution Error
0.0 1.000000 1.000000 0.000000
0.1 1.004988 1.004988 0.000000
0.2 1.019804 1.019804 0.000000
0.3 1.044031 1.044031 0.000000
0.4 1.077033 1.077033 0.000000

Mid-point rule for Example 2
Using equation (19) Xoup =X, +2h@, ;s

n=0: X, =X%+2hp
=0, x =1, r =01, x =1.004988
@, = ¢(0.1,1.004988) = 0.99504
X, =1+2x0.1x0.099504 =1.019901
n=1: x,=x+2hg,
r,=02, x,=1019901
@, =¢(0.2,1.019901) = 0.196097
X, =1.004988 +-2x0.1x0.196097 =1.044207
n=2: X, =X +2hg,
r, =03, X, =1.044207
@, = (0.3,1.044207) = 0.287299

X, =1.019901+2x0.1x0.287299 = 1.077361
The result of the mid-point rule is displayed in TABLE 9.

Table.9: Mid-point rule for Example 2

r x(r) BExact solution Error
0.0 1.000000 1.000000 0.000000
0.1 1.004988 1.004988 0.000000
0.2 1.019901 1.019804 0.000097
0.3 1.044207 1.044031 0.000176
04 1.077361 1.077033 0.000328

Adams-Bashforth two-step explicit method for Example 2
. . h
Using equation (25) X,., = X,., +§[3(pn+l -],

h
n=0: X, :x1+§[3(p1—(p0]

=0, x,=1, r=01, x =1004988
9 =9(0,1)=0
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= ((0.1,1.004988) = 0.099504

X, =1.004988 +—[3 0.099504) -0 | =1.019914

h
n=1: x3=x2+5[3¢2—(p1]
=01, x =1004988, r,=02, x,=1.019914
= ¢7(0.1,l.004988) =0.099504

=(0.2,1.019914) = 0.196095
x, =1.019914 +—[3 (0.196095)—0.099504 | =1.044353
n=2: X4=X3+E[3¢3_¢2]
r,=0.2, x,=1019914, r,=03, x,=1044353

= ¢(0.2,1.019914) =0.196095
¢, =(0.3,1.044353) = 0.287259

X, =1. 044353+—[3 (0.287259)—0.196095 | = 1.077637

The result of the Adams-Bashforth two-step explicit method is displayed in Table 10.

Table.10: Adams-Bashforth two-step explicit method for Example 2

r x(r) Exact solution Error
0.0 1.000000 1.000000 0.000000
0.1 1.004988 1.004988 0.000000
0.2 1.019914 1.019804 0.000110
0.3 1.044353 1.044031 0.000322
04 1.077637 1.077033 0.000604

Adams-Bashforth three-step explicit method for Example 2

h
+ o [230,., —160,., +5¢, |

Using equation (26) X3 = X,
h
n=0: X3=X2+E[23(pz—16(pl+5(po]

=0, X, =1,r,=01, x =1.004988 , r, =0.2,
=1.019804

=¢(0,1)=0

= ¢(0.1,1.004988) = 0.099504
=¢(0.2,1.01904) =0.196116

X, =1.019804 +—[23 0. 196116) 16 (0 099504 +5 ] 1.044126

h
n=1: X4=X3+E[23(03—16(pz+5¢1]

r,=0.1, x, =1.004988 , r, =0.2, x, =1.019804
r,=0.3, x, =1.044126
= ¢(0.1,1.004988) = 0.099504

=¢(0.2,1.019804) =0.196116
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=(0.3,1.044126 ) = 0.287322

X, =1.044126 + —[23 (0.287322)-16 (0. 196116)+ 5(0.099504 ] 1.077193

The result of the Adams-Bashforth three-step method is displayed in TABLE 11.

Table.11: Adams-Bashforth three-step explicit method for Example 2

r x(r) Bxact solution Error
0.0 1.000000 1.000000 0.000000
0.1 1.004988 1.004988 0.000000
0.2 1.019804 1.019804 0.000000
0.3 1.044126 1.044031 0.000095
04 1.077193 1.077033 0.000160

Adams-Bashforth four-step explicit method for Example 2

Using equation (27) X.,, =X, .5 +2—Z[55¢n+3 -590,., +37¢,., — 99, ]

n=0: X,=X *22 h [55go3 59¢, +37¢, —9¢, |

=0, % =1, 1, =01, x, =1.004988 , 1, =02,
, =1.019804, r, =03, X, = 1044031 ,
=¢(0.1)=0

¢(0.1,1.004988) = 0.099504
(0.2,1.019804) =0.196116
(0.3,1.044031) = 0.287348

S S

X, =1.044031+ —[55 (0.287348)-59(0.196116 ) +37/(0.099504 ) — ] 1.077010

The result of the Adams-Bashforth four-step method is displayed in TABLE 12.

Table.12: Adams-Bashforth four-step explicit method for Example 2

R x(r) Exact solution Error
0.0 1.000000 1.000000 0.000000
0.1 1.004988 1.004988 0.000000
0.2 1.019804 1.019804 0.000000
0.3 1.044031 1.044031 0.000000
04 1.077010 1.077033 0.000023

1. CONCLUSION

In this study, it is seen that the multistep methods are derived using Taylor series expansion and numerical integration. The
numerical integration approach uses the interpolatory polynomial which is determined by some data points to approximate
the solution to the differential equations.Here, we employed different single-step and multistep schemes in solving non-stiff
initial value problems of ordinary differential equations. We found out that,unlike the single-step methods, the multistep
methods attempt to gain efficiency by using information from all previously computed steps to compute the next solution
value. From the results of our numerical examples, it is established that the multistep methods, though involving more
computational effort, clearly show superiority in terms of accuracy compared to the single-step methods. The linear
multistep methods being discussedalso show stability, and hence ensure convergence.Consistency is seen to hold for the
multistep methods since they have orders that are greater than orequalto 1 (i.e. A >1).
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