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Abstract— In this paper, modelling by neural networks was used for obtaining a model for the calculation of fouling factors 

in heat exchangers. The heat exchangers used in this study are a series of four exchangers where a model was obtained for 

each exchanger after due estimation of its heat load. 

The basic theme of this paper is the investigation of fouling factors and the determination of relevant indicators followed by 

combining design and operation factors along with fouling factors in a mathematical model that may be used for the 

calculation of the fouling factor. The devised model was tested for reliabilit y and its accuracy in predicting new values for 

the fouling factor was greater than 98% in view of the design of the model 

Furthermore, the number of elements related to the design and operation was reduced to four developed formulae 

(developed factors) to which were added later the four factors selected as indicators of the occurrence of fouling. Both were 

then used as network input, whereas the output was the value of the fouling factor. 

The importance of this modelling lies in the fact that it enables th e operator to continually predict the value of the fouling 

factor in heat exchangers and it assists him in taking appropriate measures to alleviate fouling effects ensuring thereby 

continuous operation of the unit and prevention of emergency shut downs. 

Keywords— naphtha hydro rating unit , heat exchanger ,fouling, moduling  ,artificial neural network ANNW. 

  

I. INTRODUCTION 

Fouling may be considered as one of the most difficult problems of heat exchangers as it reduces heat exchanger efficiency 

and increases operating cost. Fouling in general results from the deposition of unwanted materials on heat exchanger surfaces  

leading to heat exchange temperature drop and pressure difference increase. Control of fouling is often difficult due the 

complexity of the phenomenon and the multiplicity of the factors concerned. In the present work, the Artific ial Neural 

Network Approach is used in the construction of a model that relates all design and operating variables that affect fouling in 

order to make possible the prediction of the occurrence of fouling and to enable the operator to take precautionary measures 

to alleviate the problem and avoid unnecessary shutdowns with resulting loss in production. In this study, actual operating 

data of a hydrotreating unit at the Homs Oil Refinery in Syria were utilized to refine the model constructed, making this work 

a pioneering effort in fouling research. 

 

Naphtha hydrotreatment Unit 

The Naphtha Hydrotreatment Unit started operation in 1990. In this unit a mixture of light and heavy straight-run and coking 

naphtha is hydrotreated in order to be used as feed to the isomerisation and reforming units. The Hydrotreatment unit has a 

capacity of 480103 tonnes/year. The hydrogen gas required for the hydrotreatment reactions is directly supplied from the 

reforming unit to the amount of 500 m3/hr. 

Light Naphtha (30% wt.) is mixed with straight-run heavy naphtha (70% wt.) in a floating-top tank in which thermal and 

compositional homogeneity is achieved. The naphtha, pumped at a pressure of 48 bars , is then mixed with hydrogen with a 

pressure of 46 bars (Fig. 1). The mixture is then heated first in a series of heat exchangers (A, B, C, D) where its temperat ure 

increases from 53 to 299°C and then in a furnace where it is vaporized and its temperature raised to the required reaction 

temperature of 320°C (Table 1). The heated stream is then fed into the catalyst-containing reactor where the hydrogenation 

reactions take place. The reactor effluent is cooled from which hydrogen is separated and recycled. Further, the light and 

heavy naphthas are separated with the light naphtha being fed into the isomerisation unit and the heavy naphtha into the 

reforming unit [1].             
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Table.1: design values of the heat exchangers 

 Tube-side Shell-side 

Stream (kg/h) 66,116 66,131 

Incoming temperature (°C) 250 53 

Outgoing temperature (°C) 138 319 

Operating pressure (bar) 42 48 

Pressure drop (bar) 1 1 

Fouling resistance (m2.h.°C/kJ) 0.00005 0.00007 

Allowable corrosion (mm) 3 3 

Number of passes 2 1 

Heat capacity (kJ/h) 235,72 

Film heat transfer coefficient (kJ/ m2.h.°C) 1,33 

Tube length (mm) 6,00 

Number of tubes 458 

OD of shell + thickness (mm) 1,012 + 32 

OD of tubes + thickness (mm) 25 + 2.5  

 

The problem of fouling in the hydrotreatment unit 

The problem of fouling in the hydrotreatment unit developed soon after the start of the unit’s operation. Fouling affected th e 

top of the reactor as well as the series of four heat exchangers in the unit. As a consequence the coker naphtha was excluded 

from treatment because of its high content of impurities and the operating conditions were modified, both of which actions 

tended to reduce the severity of the fouling problem [2]. The fouling problem, however, re-emerged in the period 1997-2001 

and it was more apparent in the heat exchangers ’ shells and on top of the catalyst in the reactor. This led to a sharp increase 

in the pressure difference in the reactor (Fig. 2) and a large drop in the temperature of the naphtha from the heat exchangers 

(Fig. 3). This necessitated periodic shut downs of the unit. The cost of these shut downs amounted in 2000 to $1,265 per 

annum [3]. 

On investigating the causes of fouling by analysis of the fouling deposits and the naphtha feed it was found that such deposits 

were carbon deposits with some carboxylic acids. This indicated air leakage to the naphtha feed due to the fact the feed tank 

was not tightly closed. As a result, radicals and carboxylic acids were formed which were polymerized at the high 

temperatures prevailing in the heat exchangers and heaters. These reactions were further reinforced by the solids borne with 

the feed which were products of corrosion in the distillation units [4].  

The fouling problem was then controlled by taking the naphtha feed directly from the distillation units and by increasing the  

pressure in the storage tanks to prevent air leakage. This was accompanied by reduction of the solids borne with the feed 

stream. As a result, fouling was reduced and the hydrotreatment unit was successfully operated for two consecutive years 

(2003-2004) without shutdowns [5].     

 

Selection of the modelling technique 

Current research is often directed towards the simulation of phenomena and the derivation of a mathematical model that 

encompasses all relevant factors. The techniques used for this purpose are many and varied. The artificial neural network 

approach was deemed the most appropriate for the simulation of fouling in view of the many factors involved, whether 

physical, chemical or operational and the difficulty and complexity of the calculations, their unreliability in controlling all 
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operational variables, and the non-linearity of the fouling phenomenon in itself. With this approach it would be possible to 

relate all relevant factors that affect or cause fouling making it possible for the operator to predict the fouling tendency in his 

heat exchangers and to take appropriate or precautionary measures [3,6].         

 

Fouling mechanism in heat exchangers and its main causes  

It was necessary at first to determine the mechanism and factors of fouling in the heat exchangers series E1. Towards this 

end, the deposits on the heat exchangers surfaces and the naphtha feed were analysed. The deposits’ analysis carried out in 

accordance with ASTM [7] demonstrated the presence of three fouling mechanisms, namely polymerisation, corrosion and 

particulate fouling. It further indicated that the nature of deposits had changed during the period 2000-2002 from being 

organic (polymerization fouling) into inorganic deposits (particulate and corrosion fouling) (Table 2). Polymerisation fouling 

was, however, the dominant fouling mechanism in all exchangers (Table 3). The analysis of the naphtha feed, on the other 

hand, pointed clearly to the presence of inorganic deposits on the filters which were for the most parts corrosion products of 

iron salts and iron sulphides  [9].  

Periodic analyses were carried out for bromine no., nitrogen, sulphur and solid particles in the feed that may lead to fouling. 

These indicated the presence of such contaminants that can lead to polymerisation, co rrosion and particulate fouling 

particularly with the presence of such promoting factors as air leakage and high temperature [4]. 

 

Calculation of fouling factor           

In order to estimate the size of the fouling problem in the heat exchanger series E1, the rate of heat transfer and the fouling 

factor had to be calculated for each of the heat exchangers. For such calculation measurements of the inlet and outlet 

temperatures were required. These temperatures, however, were not directly measured and had to be estimated on the basis of 

the percentage of heat exchange [11]. 

The variation of heat transfer in the period 2000-2003 is shown in Fig. 4, where it can be seen that the rate of heat transfer 

dropped to a minimum in 2000 and was then improved in 2001-2002. Comparison of the rate of heat transfer with the design 

value indicates clearly the effect of fouling on heat transfer, where the rate of heat transfer decreased to a bout half its design 

value, which points to considerable loss of the design heat capacity of the exchangers [3]. 

II. DESIGN STAGES OF THE MATHEMATICAL MODEL 

1. Data collection and preparation 

The first step in modelling using the neural networks is the collection of operating data in order to obtain an accurate model 

that approaches the actual conditions with a high prediction efficiency. Towards this end available and reliable daily 

operation data were collected for three years (2000-2002), about 900 values [3]. The data collected were then examined and 

filtered and all unreliable or jumbled data were removed using the Excel programme. In Figure 5, the method used for the 

development of the neural network model based on the back propagation algorithm is shown [11].     
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2. Selection of network input data 

There are a number of methods for the selection of a greater number of variables to be used as network input data. The 

selection of such variables will have a great effect on the network result and its prediction capability. There are a great many 

parameters that may be used in the calculation of the fouling factor, but these can be reduced in general to sixteen fact ors that 

represent given design values and measured operating variables [16]. 

 Measured values 

These include special primary operating values such as material capacity and temperatures (to the number of seven). Such 

values are constantly changing with changing composition and properties of the materials (Naphtha and reaction gas), cold 

and hot streams temperatures in the heat exchangers, and the heat exchange efficiency (Table 4). 

 Calculated values 

These include physical properties of the streams such as viscosity, thermal conductivity, heat capacity, gas molecular weight , 

Prandtl No., Reynolds No. and heat transfer coefficient (eight in all). These values are also dependent on temperatures and 

quantities and vary with measured values variations. Their values are also different in the four heat exchangers and in the 

tube and shell sides.     

 Constant values  

These include the heat exchangers design values such as the area of the heat transfer surface, the shell cross-sectional area, 

the tube cross sectional area, number of shell passes, length of tubes and the construction material for shell and tubes. The se 

values may be reduced into three coefficients which have constant values for the four heat exchangers.  

 

Table.4: Fouling factor calculation data 

Measured values 

Naphtha flow m1 kg/h 

Reaction gas flow m2 kg/h 

Hydrogen in reaction gas %  wt. 

Input to shell temperature t1d °C 

Output temperature of 

shell 

t2a °C 

Input to tubes 

temperature 

T1a °C 

Output temperature of 

tubes 

T2d °C 

Calculated values 
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Viscosity μ kg/m.h 

Heat capacity C  kJ/kg.°C 

Thermal conductivity k kj/m.h.°C 

Gas molecular weight M kg/mol 

Prandtl No.  Pr dimensionless 

Reynolds No. Re dimensionless 

Heat transfer coefficient jH dimensionless 

Constant values 

Shell cross-sectional area as m2 

Tube cross-sectional area at m2 

Area of exchanger A m2 

 

 

3. Developed data 

In order to reduce the number of factors used for the calculation of the fouling factor while preserving at the same time its  

proper representation in the network input without repetition, developed relationships were used instead that combine these 

properties in four factors which could be calculated for each exchanger using the following known relationships [10]:    

 Logarithmic Mean Temperature Difference (LMTD): where the temperatures of the cold and hot streams are involved 

in its calculation as well as the number of shell passes. LMTD may be calculated for each exchanger using the 

following equation: 
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 Overall flow Gs: This may be calculated in terms of stream flow and the cross -sectional area of the shell using the 

following equation: 
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Where 

     m·s = (m·1+m·2)= shell stream flow   

 Prandtl No. which combines the stream physical properties including its viscosity, thermal conductivity and heat 

capacity; and may be calculated using Eq. 7.21. 
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Where: 

Cs = Specific heat kJ/°C.kg 

Ks = Thermal conductivity kJ/cm.°C 

 Heat transfer coefficient jH: This expresses the dynamic properties of the stream through its relationship with Reynolds 

No., and may be calculated using the following equation: 

        
5445.0Re3652.0 sjH  

Reynolds No. Res may be calculated using the following equation: 

    

s
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s

DG




Re     (7.20) 

Where: 

De = Equivalent diameter, m 

μs = Dynamic viscosity kg/m.h 

In this manner all factors that affect the calculation of the fouling factor have been taken into account. The four developed 

data relative to the shell only have been used as network input (LMTD, Gs, Pr, jH) because of the similarity of the streams in 

both the tubes and shell sides [3]. 
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4. Network input 

The network input include the eight daily measurements data (primary data) (Table 5), seven of which are actual plant 

measurements whereas the molecular weight of the reaction gas is calculated. From such data the four developed data 

(LMTD, Gs, Pr. jH) are calculated for each exchanger to which are added the four fouling related factors, namely the 

Bromine No. br; nitrogen n, an indicator of organic fouling; sulphur s, an indicator of corrosion fouling; and ss, n indicator of 

particulate fouling. This makes the total number of input data to the neural network: eight, four of which are developed data  

(LMTD, Gs, Pr. jH) related to the exchanger operation and four related to fouling (br, n, s, ss) [3]. The network output is the 

fouling factor calculated for each exchanger (Table 6].            

 

Table.5: Measured operation values for the heat exchangers 

Measured operation data Symbol 

Naphtha (Tonne/day) 1·m 

Reaction gas (Tonne/day) 2·m 

D-Shell input temperature (°C) 1Dt 

A-Tubes input temperature (°C) 1AT 

D-shell output temperature (°C) 2Dt 

A-tubes output temperature (°C) 2AT 

Purity of hydrogen (wt %) H2p 

 

 
  

Table.6: Input and output of neural network  

Neural network input 

Logarithmic Mean Temp Difference  LMTD °C 

Shell-side Total liquid flow   Gs Kg/m2 h 

Shell side Prandtl No. Pr Dimensionless 

Heat transfer coefficient jH Neural network input 

Bromine No. br KOH mg/100g 

Nitrogen n PPM 

Sulphur s PPM 

Particulates ss PPM 

Neural network output 

Fouling factor F M2 h/kJ 

 

5. Training and testing of data 

Two sets of data are used for the training and testing of the network, namely a training set and a testing set. In the training 

stage, attention is concentrated on arriving at a neural network that is stable, harmonized and able to work efficiently afte r 

training completion. In the testing stage, the network is tested by two main tests to ascertain how does the network recall the 

training data (the preparatory step) and how does it respond to the prediction of new values that had not been part of the 

training stage (generalization step) [6].  
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In order to visually show how the network achieves recall and generalization, a training curve must be found that represents 

the average error for each recall of training and generalization data and their relationship with the number of training step s. 

The total number of available eight network input values is 900. This number was divided into two sets: a training set of 600 

and a testing set of 300. This means that the training-assigned network input is a matrix [8 600] and the generalization input 

is [8 300]. The back propagation algorithm will be used in the network training stage as shown in Fig. 7. For a well-trained 

network, i.e. a network that is able to receive more information, the recall and generalization curves must come close to eac h 

other and the average minimum generalization error is 0.1. In general, the error becomes more stable if the number of 

training steps is increased [11, 12].       

                                         

 

Fig. 7. Learning chart of back propagation algorithm 

 

6. Framework of neural network 

After the determination of the input and output of the neural network, the following basic elements for the implementation of 

the network model were put into place for maximum performance (Equivalence speed and prediction accuracy): 

6.1 Equalization of input and output data 

The input and output data for each exchanger were equalized and similarly directed, and the greater value was assigned for 

each factor of the network input and output using the excel programme and the rest of the values divided by it. By this 

means, all values were controlled within the range 0, +1. In this way, the network may perform its calculations in accordance 

with the equalized values input. On completion of the calculation, the result will then be reduced into its actual value [3].   

Consideration of the changes of the input and output factors revealed that the changes of the nitrogen factor and the bromine 

number were less than 1 percent; hence these two values were not equalized. The change range for the other six input factors 

requires equalization, and was therefore equalized as previously mentioned to bring it within the range 0 to +1. The network 

output is the fouling factor which is of the order of parts per thousand and was equalized by multiplication by 100. All othe r 

data numbering 900 were equalized, i.e. on the training [8, 600] and generalization [8, 300] matrices. The value of the 

fouling factor given by the network is an equalized value and the result must therefore be divided by 100 in order to obtain 

the actual fouling factor value. In the network input, the values for the fouling factors (br, n, s, ss) were considered to be 

similar in all four exchangers because of the difficulty of measuring their changes 2. The change range for the network input 

for the four exchangers is given in Table 4.             
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Table.7: Change range for network input and output for the heat exchangers 

 Exchanger A Exchanger B Exchanger C Exchanger D 

 Change range of network input 

LMTD 57-99 40-86 46-85 59-98 

Pr 4.14-4.65 3.31-3.73 2.72-3.19 2.30-2.72 

jH 70-103 85-125 100-143 137-167 

Gs 1,112,903-538,306 1,112,903-538,306 1,112,903-538,306 1,112,903-538,306 

Br 0.13-0.49 0.13-0.49 0.13-0.49 0.13-0.49 

N 0.12-0.95 0.12-0.95 0.12-0.95 0.12-0.95 

S 300-460 300-460 300-460 300-460 

SS 2-80 2-80 2-80 2-80 

 Change range of network output 

F 0.0009-0.0027 0.0002-0.0022 0.0017-0.0039 0.0007-0.0021 

 

6.2. Initial weighting 

Before starting the training of the network, weighting factors were placed between the outer layers knots. As there was no 

previous information on the required system to be modelled, arbitrary factors were used so that they are irregularly distribu ted 

within a zero range of figures (i.e. between +0.5 and -0.5). The initial distribution of the weighting factors depends on both 

the number of input variables and the number of hidden neuron layers [12].  

6.3. Structure of neural network 

 Training magnitude 

The number of training times was selected on the basis of the order of magnitude of the fouling factor (10,000). This number 

was then increased gradually to 50,000, where the number of training times was related to the change in the number of knots 

in the hidden layers for better performance, i.e. to the minimum difference between the calculated fouling factor and the 

factor resulting from the network [13].  

 Transfer factor 

The other factor controlling the output knot is the transfer factor, as the network gets trained faster when the transfer factor is 

in a symmetrical network, i.e. in the range between -1 and +1. 

The linear function whose range is between -1 and +1 was selected because it agrees with the change in the fouling curve. In 

polymerization fouling, fouling increases with time since fouling-causing factors are present and the temperature is 

increasing. Furthermore, the logarithmic factor whose range is between 0 and +1 was selected because it agrees with the 

change in the fouling factor in particulate fouling, where the accumulation of fouling matter increases to such an extent that 

fouling becomes constant due to ending of fouling-causing factors [14]. 

 Number of knots in the hidden layers  

The number of knots in the input and output layers is proportional to the number of network input and output values 

respectively. Two hidden layers were used so that the network may find the required connection. The number of the network 

input layer knots is eight, four of which are developed relationships calcula ted according to functions relative to each 

exchanger and the other four are fouling dependent. The number of output layer knots is one. The network was trained on 

different numbers of hidden layer knots in each exchanger in order to get a strong network [15]. 

 Selection of learning rate and kinetic factor 

The learning rate and the kinetic factor are significant indicators for the control of the efficiency of algorithmic training. The 

learning rate regulates the relative direction of weight changes whereas the kinetic factor strengthens the stability of the 

weighting factors compatibility on training, makes the changes closer and accelerates the approach toward s the stable case. It 

is a constant varying between 0 and +1.  

The learning rate and the kinetic factor for back propagation were selected as 0.3 and 0.4 for the first hidden layer and 0.25 

and 0.4 for the second layer for a training volume of 10,000 times  in accordance with table 8 for learning by back 

propagation for two different layers [16].      

 

Table.8: Values of learning rate and kinetic factor for the case of learning by back propagation  

First hidden layer 

Training cycles 0-10,000 10,000-30,000 30,000-70,000 70,000-150,000 

Learning rate 0.3 0.15 0.375 0.234 
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Kinetic factor 0.4 0.2 0.05 0.00312 

Second hidden layer 

Training cycles 0-10,000 10,000-30,000 30,000-70,000 70,000-150,000 

Learning rate 0.25 0.125 0.03125 0.0195 

Kinetic factor 0.4 0.2 0,05 0.00312 

 

7. Common initial properties for the fouling factor calculation networks in exchangers  

The common initial properties for the fouling factor calculation network in the exchangers may be summarized as follows:   

 The network is static with regard to the memory as there is no relation between the current and former inputs. 

 The network is frontal with regard to the feed. 

 Network learning is supervised as the output is already known. 

 The connection between the layers is total in order to improve the accuracy of the resulting relationship.  

 The network has multiple inputs but a single output.  

 The network has three layers, two hidden and one output.  

 The learning rates for the first and second layers are 0.3 and 0.25 respectively.  

  The dynamic factors for the first and second layers are 0.25 and 0.4 respectively.  

 The training rate is 50,000. 

 The training is according to the back propagation algorithm.  

 The transfer function logsig for the first hidden layer, purelin for the second layer and purelin for the output 

layer.  

 The training function is Trainlm. 

Fig. 8 illustrates the general structure for the combined neural network for the four heat exchangers.  

 

 

 
Fig. 8. General structure of the neural network for the four exchangers. 

 

8. The exchanger-specific models and their performance 

After specification of the main properties of the neural network for the calculation of the fouling factor, the network was 

trained for each of the four exchangers in order to complete its properties by determining the number of knots in the hidden 

layers and showing its performance and efficiency in recovery and generalization [3].  

Fouling factor calculation network for Exchanger D 

 The measured operating data are input and molecular weight og the reaction gas is added (numbering 8) (Table 

9). 

 The four developed data are calculated in accordance with the particular function for each exchanger, 

function.1. 

 The input for the neural network includes the input matrix of dimensions [6008], the four fouling factors and 

the developed four data for 600 readings (Table 10). 

 The neural network output is a matrix of dimensions [1600].  It is fouling factor for each exchanger calculated 

using the equations (Table 11].  

 Several models of the neural network were prepared differing in the number of knots in the two hidd en layers 

and the number of training steps. This was carried out in order to study the effect of the number of knots and the 

number of training steps on the efficiency of the model in order to achieve an optimum model. These models 

were trained in order to determine their performance and their recall efficiency (Table 12).     

 

Table 12. The efficiency of exchanger D network models 

Generalization efficiency Recall efficiency  Performance Network model 
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0.89% 0.98%  2.860E-05 1 

0.92% 0.97%  7.575-E05 2 

0.89% 0.99%  2.690E-05 3 

0.98% 0.98%  2.82E-05 4 

0.77% 0.99%  9.985E-06 5 

0.87% 0.99%  1.568E-05 6 

 

After due consideration of the differences between the former models, the fourth model was selected for the calculation of the 

fouling factor in exchanger D where its recall of trained values efficiency is o.977, its efficiency for the generalization values 

0.984, its performance 2.8210-5 and its weighting factors as given in Appendix 1. 

 

 Performance 

Figure 9 shows the model training curve according to the function (2). 

 

 
Fig. 9. Model training curve for exchanger D.  

 

 Recall efficiency 

On carrying out simulation for the model with the values on which it has been trained, input matrix [600 8] according to the 

function (3), the agreement ratio was 97.7% and the slope of the function 0.955 (Fig. 10). 

 

 
Fig. 10. Model recall efficiency for exchanger D. 

 

 Generalization efficiency 

For the model evaluation, a simulation was carried out on a new input matrix with dimensions [8300] according to the 

function (4). The agreement ratio was 0.984 and the function slope 0.987 (Figure 11). 
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Fig. 11. Model generalization efficiency for exchanger D. 

 

Comparing the value of the fouling factor as calculated by the relevant equations and its value resulting from the model of 

exchanger D in training and generalization, we find that they are closely similar and within the model efficiency in the two 

steps (Table 13).  

 

Table 13. Comparison between the values of the fouling factor for exchanger D as calculated by the equations and according 

to the model  

Calculated value of the fouling factor for exchanger D 

Training feed 0.086 0.086 0.082 0.081 0.075 0.075 0.086 0.086 

Generalization feed 0.094 0.093 0.092 0.094 0.093 0.090 0.096 0.094 

Value of the fouling factor according to the network model net_d 

Training feed 0.084 0.085 0.086 0.084 0.082 0.076 0.080 0.084 

Generalization feed 0.091 0.090 0.090 0.091 0.091 0.089 0.094 0.092 

 

In this manner, the optimum neural network for the calculation of the fouling factor in exchanger D was obtained. This 

procedure was repeated for the other three exchangers, where there were for each exchanger a function for the calculation of 

the developed data and input and output matrices . Several models were prepared for each exchanger that differ in the number 

of knots in the two hidden layers and in the number of training steps. An optimum model for each exchanger was obtained. 

Table 14 shows a comparison between the calculated fouling factors according to the proposed model and the 

mathematically-calculated values.   

 

Table 14. Comparison between the values of the fouling factor as calculated by the equations and according to the model  

Calculated value of the fouling factor for exchanger C 

Training feed 0.024 0.026 0.074 0.041 0.026 0.042 0.042 0.024 

Generalization feed 0.094 0.093 0.092 0.094 0.093 0.090 0.096 0.094 

Value of the fouling factor according to the network model net_d 

Training feed 0.036 0.042 0.038 0.041 0.029 0.043 0.041 0.036 

Generalization feed 0.087 0.087 0.087 0.086 0.087 0.083 0.091 0.088 

 

Calculated value of the fouling factor for exchanger B 

Training feed 0.145 0.132 0.240 0.161 0.134 0.163 0.165 0.145 

Generalization feed 0.342 0.343 0.340 0.361 0.342 0.332 0.351 0.341 

Value of the fouling factor according to the network model net_d 

Training feed 0.151 0.131 0.234 0.152 0.135 0.145 0.161 0.151 

Generalization feed 0.335 0.342 0.332 0.350 0.338 0.330 0.342 0.335 

 

Calculated value of the fouling factor for exchanger A 

Training feed 0.099 0.086 0.086 0.082 0.081 0.075 0.075 0.099 

Generalization feed 0.093 0.093 0.091 0.093 0.093 0.089 0.095 0.093 
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Value of the fouling factor according to the network model net_d 

Training feed 0.098 0.088 0.086 0.081 0.081 0.078 0.071 0.098 

Generalization feed 0.089 0.089 0.088 0.089 0.089 0.086 0.092 0.089 

 

Thus it was possible by using the neural networks to find the four models that relate the operation factors of  the heat 

exchangers to the fouling agents with an efficiency of the order of e -5 (1-4), an average recall efficiency in the range 0.993-

0.997 and a generalization efficiency in the range 0.94-0986 (Table 15). 

 

Table 15. Properties of the fouling factor calculation models in the four heat exchangers 

Models No. of knots 

network 

Performance Recall Generalization 

Exchanger D 2-6 2.824E-5 0.977 0.984 

Exchanger C 4-2 4.38E-5 0.985 0.94 

Exchanger B 4-2 1.3E-4 0.977 0.979 

Exchanger A 20-12 1E-5 0.993 0.966 

 

Thus it becomes possible for the operator to predict the value of the fouling factor and its different effects in different 

exchangers. All he has to do then is take the appropriate measures to alleviate the severity of fouling in order to avoid 

emergency shut downs. Such measures include for example blending a low-bromine-number crude with the crude with a 

high bromine number. If the nitrogen content is high, its source must then be sought whether it is from additives and also th e 

type of additives. It may then be necessary to reduce the amounts of additives or change their type. If there are large amounts 

of particulates, a filtering system must be used; but for a high sulphur content, different measures may be used such as 

avoidance of humidity with the naphtha stream or improving the naphtha stabilization process in the distillation unit. These 

are some of the examples that may be resorted to by the operator in order to alleviate the fouling problem and extend the 

proper working with a higher efficiency and for longer periods of time.         

 

III. CONCLUSION 

The fouling in heat exchanger is considered the most important factor in reducing heat exchange efficiency and increasing 

operating cost. In this study, the quality of the waste was determined in a series of four heat exchangers in the naphtha 

hydrogenation unit. The foulinf factor was calculated in each of them for three years.The most important factors causing the 

pollution were determined: solide suspended, Chlorine , sulpher and  bromine no. The method of the inductive networks was 

used to find four mathematical models to calculate the factor facture in each exchanger that linked the factors of operation 

and design to the factors causing the fouling , and then these modules were tested in the reliability statement. Its accuracy in 

devising new values for the agent was greater than 98%,  this is due to the size of the initial data that has been used to design 

the model. The importance of this modeling is that it enables the operator to continuously  predict the value of the heat agent 

in the heat exchangers, and help him to take appropriate measures to mitigate it as much as possible, so as to continue the 

work of the unit and prevent the emergency stop. 

 

 

 

 

 

 

 

 

 

 

      

 

 

 

Fig.2. Reactor pressure drop vs time in naphtha hydrotreater. 
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Fig. 3. The degradation of inlet furnace temperature vs time in heat exchanger A  

 

 

 

Fig. 4. Heat transfer rate in exchangers during 2000-2002 

 

 

Table 2. Summary of deposit analyses between 1999 and 2002. 

 1999 2000 2001 2002 

Organic (wt %) 99.2 94.9 84.5 47.2 

Non Organic (wt %) 0.1 5.1 16.3 53.5 

Carbon (wt %) 36.6 - 61.2 10.4 

Chloride (wt %) 57.5 Trace 5.3 2.2 

Sulphur (wt %) 3.6 18.6 14.4 26.5 

Iron (wt % of ash) 0.1 4.4 9.3 34.6 

 

 

Table 3. Changing nature of fouling during 2000-2002 

 1999 2000 2001 2002 

Exchanger D  Polymerization Particulate 

Polymerization 

Particulate 

Polymerization 

Exchanger C   Polymerization Particulate 

Polymerization 

Exchanger B Polymerization  Polymerization Particulate 

Polymerization 

Exchanger A   Corrosion 

Polymerization 

Corrosion 

Polymerization 

Reactor  Polymerization  Particulate 
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Polymerization 

 

 

Table 9. calculated operation data for the heat exchangers. 
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M1 M2 T1a T2d t1d t2d H%  MH2 data 

Kg/hr Kg/hr C C C C نقاوة Kg mol  

848 48 255 114 30 319 88.1 6.0 14/07/1999 

1300 54 252 117 37 319 85.3 7.0 20/07/1999 

1233 53 245 114 53 319 82.2 7.9 30/07/1999 

1250 53 244 114 65 319 89.7 6.2 10/08/1999 

761 55 258 120 69 319 81.6 7.9 20/08/1999 

1542 54 248 116 80 319 82.2 7.9 30/08/1999 

1502 56 242 116 85 319 89.7 6.2 10/09/1999 

1458 52 240 112 90 319 90.2 5.1 20/09/1999 

1460 52 242 113 91 319 88.9 5.7 30/09/1999 

1501 52 235 111 94 319 88.9 5.6 10/10/1999 

1507 55 231 111 88 319 89.9 5.3 20/10/1999 

1512 50 236 110 85 319 89.5 5.2 30/10/1999 

1410 53 232 110 90 319 87.9 6.0 10/11/1999 

1042 52 231 109 83 319 89.6 5.4 20/11/1999 

1465 49 230 107 86 319 88 6.2 30/11/1999 

1510 50 228 107 79 319 88.6 6.5 10/12/1999 

1465 56 225 110 78 319 87 5.9 20/12/1999 

1454 56 224 110 86 319 90.9 4.9 30/12/1999 

1466 53 225 108 86 319 88.6 5.3 10/01/2000 

1346 53 218 106 86 319 85.7 6.5 20/01/2000 

1298 49 220 104 86 319 88.1 5.8 30/01/2000 

694 52 220 106 88 319 86 6.5 10/02/2000 

1356 49 222 104 82 319 87 5.9 20/02/2000 

1409 49 220 104 82 319 86.5 6.2 29/02/2000 

1358 46 218 101 80 319 84.4 7.1 10/03/2000 

1393 45 220 101 82 319 85.9 6.3 20/03/2000 

1166 47 222 103 85 319 84.7 6.7 30/03/2000 

1173 50 245 112 37 319 85.3 7.0 10/05/2000 

1529 48 246 111 53 319 82.2 7.9 20/05/2000 

1548 49 248 113 65 319 89.7 6.2 30/05/2000 

945 50 245 112 69 319 81.6 7.9 10/06/2000 

1564 49 244 111 80 319 82.2 7.9 20/06/2000 

1512 53 243 114 85 319 89.7 6.2 30/06/2000 

1380 55 245 116 75 319 90.2 5.1 10/07/2000 

1491 53 242 113 91 319 88.9 5.7 20/07/2000 

1409 56 241 115 94 319 88.9 5.6 30/07/2000 

1507 54 242 114 88 319 89.9 5.3 10/08/2000 

1450 51 242 112 85 319 89.5 5.2 20/08/2000 

1449 54 240 114 90 319 87.9 6.0 30/08/2000 

1435 56 238 114 83 319 89.6 5.4 10/09/2000 

 

Table 10. Neural network input and output for exchanger D (Training and recall values) (Matrix 1600)  

Network input Output 

LMTD gs pr jh Br no N S SS F 

                  

0.59 0.53 0.915 0.699 0.39 0.35 0.76 0.57 0.123 

https://dx.doi.org/10.22161/ijcmp.2.5.1
http://www.aipublications.com/ijcmp


International journal of Chemistry, Mathematics and Physics (IJCMP)                                        [Vol-2, Issue-5, Sept-Oct, 2018] 

https://dx.doi.org/10.22161/ijcmp.2.5.1                                                                                                                      ISSN: 2456-866X 

www.aipublications.com/ijcmp                                                                                                                                                   Page | 48  

0.59 0.68 0.921 0.703 0.35 0.38 0.78 0.64 0.099 

0.60 0.72 0.909 0.815 0.32 0.25 0.82 0.60 0.095 

0.64 0.78 0.925 0.841 0.28 0.28 0.78 0.61 0.091 

0.58 0.81 0.905 0.866 0.35 0.59 0.73 0.69 0.078 

0.61 0.87 0.911 0.906 0.38 0.25 0.89 0.93 0.078 

0.58 0.87 0.902 0.932 0.39 0.28 1.01 0.79 0.072 

0.65 0.92 0.929 0.941 0.36 0.28 1.00 1.00 0.078 

0.65 0.93 0.927 0.946 0.26 0.13 0.67 0.93 0.078 

0.67 0.94 0.924 0.956 0.21 0.12 0.78 0.71 0.082 

0.64 0.95 0.913 0.957 0.24 0.28 0.77 0.36 0.076 

0.62 0.95 0.904 0.969 0.26 0.45 0.76 0.46 0.073 

0.60 0.95 0.897 0.983 0.21 0.46 0.82 0.47 0.071 

0.64 0.96 0.925 0.985 0.23 0.56 0.89 0.43 0.075 

0.66 0.96 0.937 0.976 0.29 0.43 0.91 0.57 0.076 

0.64 0.95 0.932 0.971 0.31 0.33 0.96 0.36 0.073 

0.69 0.95 0.949 0.971 0.34 0.33 0.98 0.14 0.079 

0.70 0.95 0.954 0.955 0.37 0.45 1.00 0.50 0.084 

0.68 0.95 0.951 0.946 0.33 0.62 0.89 0.57 0.076 

0.67 0.95 0.949 0.955 0.38 0.52 0.87 0.61 0.076 

0.66 0.93 0.938 0.959 0.35 0.24 0.84 0.67 0.077 

0.68 0.92 0.943 0.959 0.38 0.44 0.89 0.73 0.084 

0.68 0.93 0.939 0.948 0.28 0.15 0.87 0.43 0.085 

0.68 0.93 0.945 0.954 0.22 0.33 0.84 0.79 0.085 

0.69 0.91 0.944 0.954 0.13 0.22 0.80 0.47 0.085 

0.70 0.91 0.944 0.941 0.26 0.18 0.78 0.43 0.087 

0.67 0.91 0.930 0.937 0.33 0.13 0.82 0.41 0.085 

0.59 0.93 0.896 0.947 0.44 0.23 0.76 0.36 0.070 

0.61 0.93 0.904 0.987 0.39 0.15 0.80 0.86 0.072 

0.68 0.94 0.931 0.981 0.37 0.95 0.82 0.50 0.084 

0.69 0.94 0.945 0.962 0.33 0.46 0.93 0.60 0.083 

0.64 0.94 0.925 0.955 0.26 0.38 0.84 0.43 0.074 

0.70 0.94 0.956 0.976 0.33 0.35 0.78 0.29 0.082 

0.67 0.94 0.942 0.952 0.34 0.36 0.89 0.43 0.083 

0.69 0.95 0.941 0.959 0.28 0.25 0.91 0.14 0.085 

0.70 0.95 0.946 0.961 0.37 0.85 0.93 0.03 0.085 

0.68 0.93 0.940 0.961 0.32 0.34 0.87 0.07 0.084 

0.66 0.92 0.929 0.958 0.33 0.43 0.78 0.11 0.080 

0.65 0.93 0.927 0.963 0.28 0.35 0.71 0.14 0.081 

0.63 0.93 0.912 0.967 0.24 0.74 0.67 0.50 0.078 

0.64 0.92 0.918 0.978 0.35 0.56 0.71 0.64 0.080 

0.68 0.92 0.945 0.966 0.29 0.16 0.69 0.69 0.085 

0.68 0.90 0.926 0.951 0.38 0.24 0.72 0.66 0.089 

0.71 0.86 0.934 0.960 0.33 0.39 0.73 0.60 0.100 

0.71 0.94 0.918 0.934 0.22 0.28 0.71 0.04 0.093 

0.75 0.94 0.925 0.978 0.39 0.22 0.78 0.14 0.101 

0.75 0.95 0.924 0.969 0.43 0.27 0.80 0.10 0.101 

0.77 0.95 0.933 0.971 0.45 0.17 0.82 0.29 0.103 
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Table 11. Neural network input and output for exchanger D (generalization values) (Matrix 1300)  

Network input Output 

LMTD gs pr jh Br no N S SS  F 

                  

0.71 0.93 0.916 0.963 0.48 0.27 0.89 0.41 0.100 

0.68 0.93 0.897 0.966 0.39 0.15 0.87 0.71 0.097 

0.69 0.93 0.902 0.972 0.32 0.27 0.84 0.40 0.098 

0.70 0.92 0.906 0.967 0.49 0.66 0.93 0.56 0.103 

0.73 0.85 0.913 0.960 0.45 0.48 0.87 0.11 0.115 

0.71 0.84 0.904 0.919 0.37 0.49 0.89 0.14 0.117 

0.71 0.81 0.909 0.917 0.43 0.39 0.82 0.39 0.120 

0.68 0.85 0.897 0.901 0.35 0.24 0.84 0.67 0.108 

0.67 0.87 0.893 0.931 0.38 0.44 0.89 0.73 0.106 

0.70 0.84 0.902 0.945 0.28 0.15 0.87 0.43 0.115 

0.73 0.83 0.916 0.924 0.21 0.12 0.78 0.71 0.122 

0.72 0.87 0.918 0.909 0.24 0.28 0.80 0.36 0.114 

0.72 0.81 0.919 0.934 0.26 0.45 0.76 0.46 0.123 

0.72 0.82 0.922 0.903 0.21 0.46 0.82 0.47 0.121 

0.60 0.81 0.919 0.908 0.23 0.56 0.89 0.43 0.090 

0.62 0.82 0.925 0.902 0.29 0.43 0.91 0.57 0.094 

0.65 0.93 0.926 0.905 0.31 0.33 0.96 0.36 0.086 

0.67 0.93 0.926 0.955 0.34 0.33 0.98 0.14 0.091 

0.63 0.92 0.914 0.954 0.37 0.45 1.00 0.50 0.087 

0.65 0.94 0.938 0.961 0.33 0.62 0.89 0.57 0.086 

0.65 0.92 0.939 0.959 0.38 0.52 0.87 0.61 0.087 

0.68 0.93 0.932 0.954 0.35 0.24 0.84 0.67 0.093 

0.63 0.93 0.916 0.955 0.38 0.44 0.89 0.73 0.085 

0.63 0.93 0.914 0.969 0.28 0.15 0.87 0.43 0.086 

0.63 0.98 0.860 0.966 0.22 0.33 0.84 0.79 0.088 

0.64 0.82 0.917 0.996 0.13 0.22 0.80 0.47 0.103 

0.64 0.82 0.917 0.908 0.26 0.18 0.78 0.43 0.103 

0.65 0.74 0.911 0.908 0.33 0.13 0.82 0.41 0.121 

0.65 0.87 0.915 0.849 0.44 0.23 0.76 0.36 0.099 

0.65 0.94 0.913 0.932 0.39 0.15 0.80 0.86 0.092 

0.64 0.95 0.901 0.973 0.37 0.95 0.82 0.50 0.089 

 

Functions of Exchanger d 

Function (1) Function of developed values for exchanger D 
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في المبادل تابع تدريب الشبكة العصبونية    2التابع  D 

Appendix 1. weighting factors for the network model of exchanger D 

 

w1 =   1.0e+003 *  

 

 

 

 

 

 

 

 

 

 

Columns 1 through 6  

    1.0014   -0.2151    2.1518   -0.7096   -0.1884   -0.0818    

   -0.0181   -0.0246    0.0436    0.0378    0.0038    0.0008 

   -0.0038    0.0090   -0.0046   -0.0049   -0.0009   -0.0003 

   -0.4237    0.8263   -0.2406   -0.0972    0.1333    0.1299 

   -0.0065   -0.0148    0.0666   -0.0028    0.0042    0.0035 

    0.0185   -0.0021   -0.0184   -0.0057   -0.0012   -0.0006 

  Columns 7 through 8  

    0.4699    0.0954 

    0.0023    0.0012 

function [f_d]=get_fdparam(v) 

m1=v(1); m2=v(2); t1d=v(3); t2a=v(4); n=v(5); mh=v(6); T2=v(7); 

T1a=v(8); 

h = t2a - t1d; 

t2d = t1d + (h * 0.32); 

m1 = (m1 * 1000) / 24; 

m2 = (m2 * 1000) / 24; 

x = (t2d + t1d) / 2; 

cpn = 0.0045 * x + 2.0669; 

dt = (t2d - t1d)  ; 

wh = n * 2.016 / (mh * 100)    ; 

hh = 4.19 * (6.8 + 0.0006 * x); 

cph = (hh / 2.016) * wh; 

whg = 1 - wh; 

cpg = (0.00428 * x + 1.5606) * whg; 

cptotal = cph + cpg      ; 

T1 = T2 + (T1a - T2) * 0.24; 

h = (T1 - t2d); 

c = (T2 - t1d); 

lmtd = (h - c) / log((h / c)); 

lmtd = lmtd * 0.94; 

m = m1 + m2; 

mg = m2 / (m); 

umix = 1.5484 * exp(-0.0064 * x) * (1 - mg) + 0.0327 *exp(0.0016 * x) 

* mg; 

gs = m / 0.062; 

re = (gs * 0.025) / umix; 

jh = 0.3652 * power(re, 0.5445); 

c = mg * cptotal + (1 - mg) * cpn; 

k = (-0.0003 * x + 0.5675) * (1 - mg) + 0.245 * mg; 

z = c * umix / k; 

pr = power(z, 0.333); 

f_d=[lmtd gs pr jh] 

Function out_d=train_d(input,f) 

net_d=newff(minmax(input),[6,2,1],{'logsig','pureli

n','purelin'},'trainlm'); 
net_d.trainParam.show = 5; 

net_d.trainParam.epochs = 5000; 
net_d.trainParam.goal = 1e-5; 
[net_d,tr]=train(net_d,input,f); 

 

Weighting factors 

for input layer 

Hidden area weighting 

factors 1 
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   -0.0008   -0.0004 

    0.3997    0.0501 

    0.0040    0.0025 

   -0.0008   -0.0007 

 

w2 =    0.2935   -0.1036   -1.3388   -0.3438   -0.2406    0.8049 

           -0.4125    0.5061   -0.3847    0.5295    0.7779    0.2279 

 

w3 =    0.0812    0.0433 

 

b1 =  1.0e+003 *   -2.5961 

                               -0.0401 

                                0.0083 

                               -0.6656 

                               -0.0458 

                                0.0101 

b2 =   -0.3010 

            0.6923 

 

b3 =    0.1696 

 

 

 

 

Function (3) Network training simulation function for exchanger D 

recall =sim (net_d, input) 

[m,b,r]=postreg (recall,f) 

 

Function (4) Network generalization simulation function for exchanger D 

generate =sim (net_d, newdata) 

[m,b,r]=postreg (generate, newf) 
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