• editor.aipublications@gmail.com
  • Track Your Paper
  • Contact Us
  • ISSN: 2456-8635 (NAAS Rating: 3.43)

International Journal Of Horticulture, Agriculture And Food Science(IJHAF)

How can identify sensitivity of hydraulic characteristics of irrigation systems?

Mohammad Valipour


International Journal of Horticulture, Agriculture and Food science(IJHAF), Vol-1,Issue-1, May - June 2017, Pages 30-38,

Download | Downloads : 6 | Total View : 1636

Share

Due to the benefits of center pivot irrigation system into the other techniques, especially surface irrigation, more accurate design of these systems for saving in water resources, increasing irrigation efficiency, and finally encourage farmers to use of this system (when using this method is economical), recognition of effective parameters on center pivot have a great importance. In this study, using PipeLoss software, amounts of pressure loss, friction slope, inflow velocity, velocity head, and Reynolds number in center pivot systems survived. The results showed that: Pipe inside diameter was more effective than other parameters. Changes of pressure loss, in all cases (except Qs), were the maximum. Changes of velocity head were the maximum in scenarios related to the changes of system discharge. In center pivot system design, should be noted to pipe inside diameter and system discharge as input and pressure loss as output, more than other inputs and outputs parameters.

pressurized irrigation, hydraulic properties, irrigation system design.

[1] King B.A. and D.C. Kincaid, 1997. Optimal Performance from Center Pivot Sprinkler Systems, University of Idaho College of Agriculture, http://www.cals.uidaho.edu/edcomm/pdf/BUL/BUL0797.pdf
[2] Smith P., 2010. EVALUATING A CENTRE PIVOT IRRIGATION SYSTEM, State of New South Wales through Department of Industry and Investment (Industry & Investment NSW), http://www.dpi.nsw.gov.au/__data/assets/pdf_file/0003/317478/Evaluating-a-centre-pivot-irrigation-system.pdf
[3] Omary M., C.R. Camp and E.J. Sadler, 1997. CENTER PIVOT IRRIGATION SYSTEM MODIFICATION TO PROVIDE VARIABLE WATER APPLICATION DEPTHS, APPLIED ENGINEERING IN AGRICULTURE, 13 (2): 235-239. http://naldc.nal.usda.gov/download/14326/PDF
[4] Porter D.O. and T.H. Marek, 2009. CENTER PIVOT SPRINKLER APPLICATION DEPTH AND SOIL WATER HOLDING CAPACITY, Proceedings of the 21st Annual Central Plains Irrigation Conference, Colby Kansas, 112-121. http://www.ksre.ksu.edu/irrigate/OOW/P09/Porter09.pdf
[5] Vories E., P. Tacker, D. Stephenson, S. Bajwa and C. Perry, 2008. Performance of a Variable Rate Center Pivot System, World Environmental and Water Resources Congress 2008: Ahupua’A, 1-10, http://dx.doi.org/10.1061/40976(316)83)
[6] Anwar A., 1999. Friction Correction Factors for Center-Pivots, J. Irrig. Drain Eng., 125 (5): 280-286. http://dx.doi.org/10.1061/(ASCE)0733-9437(1999)125:5(280)
[7] Anwar A., 2000. Correction Factors for Center Pivots with End Guns, J. Irrig. Drain Eng., 126 (2): 113–118. http://10.1061/(ASCE)0733-9437(2000)126:2(113)
[8] Reddy J. and Apolayo H., 1988. Friction Correction Factor For Center Pivot Irrigation Systems, J. Irrig. Drain Eng., 114 (1): 183–185. http://10.1061/(ASCE)0733-9437(1988)114:1(183)
[9] Valiantzas J. and Dercas N., 2005. Hydraulic Analysis of Multidiameter Center-Pivot Sprinkler Laterals, J. Irrig. Drain Eng., 131 (2): 137–146. http://10.1061/(ASCE)0733-9437(2005)131:2(137)
[10] Tabuada M., 2011. Hydraulics of Center-Pivot Laterals: Complete Analysis of Friction Head Loss, J. Irrig. Drain Eng., 137 (8): 513–523. http://10.1061/(ASCE)IR.1943-4774.0000314
[11] Scaloppi E. and Allen R., 1993. Hydraulics of Center Pivot Laterals, J. Irrig. Drain Eng., 119 (3): 554–567. http://10.1061/(ASCE)0733-9437(1993)119:3(554)
[12] Scaloppi E. and Allen R., 1993. Hydraulics of Irrigation Laterals: Comparative Analysis, J. Irrig. Drain Eng., 119 (1): 91–115. http://10.1061/(ASCE)0733-9437(1993)119:1(91)
[13] Scaloppi E. and Allen R., 1994. Erratum: "Hydraulics of Center Pivot Laterals" (May/June, 1993, Vol. 119, No. 3), J. Irrig. Drain Eng., 120 (2): 465–465. http://10.1061/(ASCE)0733-9437(1994)120:2(465)
[14] Helweg O. 1988, Using Center Pivots for Research, J. Irrig. Drain Eng., 114 (2): 358–363. http://10.1061/(ASCE)0733-9437(1988)114:2(358)
[15] Peters R. and Evett S., 2008. Automation of a Center Pivot Using the Temperature-Time-Threshold Method of Irrigation Scheduling, J. Irrig. Drain Eng., 134 (3); 286–291. http://10.1061/(ASCE)0733-9437(2008)134:3(286)
[16] Mohamoud Y., McCarty T. and Ewing, L., 1992. Optimum Center Pivot Irrigation System Design with Tillage Effects, J. Irrig. Drain Eng., 118 (2): 291–305. http://10.1061/(ASCE)0733-9437(1992)118:2(291)
[17] Spare D., A. Beutler and R. Bliesner, 2006. Field Performance Analysis of Center Pivot Sprinkler Packages, World Environmental and Water Resource Congress 2006 : Examining the Confluence of Environmental and Water Concerns, http://dx.doi.org/10.1061/40856(200)283
[18] Gilley J., 1984. Suitability of Reduced Pressure Center Pivots, J. Irrig. Drain Eng., 110 (1): 22–34. http://10.1061/(ASCE)0733-9437(1984)110:1(22)
[19] Molle B. and Gat Y., 2000. Model of Water Application under Pivot Sprinkler. II: Calibration and Results, J. Irrig. Drain Eng., 126 (6): 348–354. http://10.1061/(ASCE)0733-9437(2000)126:6(348)
[20] Gat Y. and Molle B., 2000. Model of Water Application under Pivot Sprinkler. I: Theoretical Grounds, J. Irrig. Drain Eng., 126 (6): 343–347. http://10.1061/(ASCE)0733-9437(2000)126:6(343)
[21] Yan H.J., Jin H.Z. and Y.C. Qian, 2010. Characterizing center pivot irrigation with fixed spray plate sprinklers, Science China Technological Sciences, 53 (5): 1398-1405. http://10.1007/s11431-010-0090-8
[22] Dukes M.D. and C. Perry, 2006. Uniformity testing of variable-rate center pivot irrigation control systems, Precision Agriculture, 7 (3): 205-218. http://10.1007/s11119-006-9020-y
[23] Marjang N., G.P. Merkley and M. Shaban, 2012. Center-pivot uniformity analysis with variable container spacing, Irrigation Science, 30 (2): 149-156. http://10.1007/s00271-011-0272-6
[24] Silva L.L., 2007. Fitting infiltration equations to centre-pivot irrigation data in a Mediterranean soil, Agricultural Water Management, 94 (1–3): 83–92. http://dx.doi.org/10.1016/j.agwat.2007.08.003
[25] Delirhasannia R., A.A. Sadraddini, A.H. Nazemi, D. Farsadizadeh and E. Playán, 2010. Dynamic model for water application using centre pivot irrigation, Biosystems Engineering, 105 (4): 476–485. http://dx.doi.org/10.1016/j.biosystemseng.2010.01.006
[26] Valín M.I., M.R. Cameira, P.R. Teodoro and L.S. Pereira, 2012. DEPIVOT: A model for center-pivot design and evaluation, Computers and Electronics in Agriculture, 87: 159–170. http://dx.doi.org/10.1016/j.compag.2012.06.004
[27] Abo-Ghobar H.M., 1992. Losses from low-pressure center-pivot irrigation systems in a desert climate as affected by nozzle height, Agricultural Water Management, 21 (1–2): 23–32 http://dx.doi.org/10.1016/0378-3774(92)90079-C
[28] Heermann D.F., H.R. Duke and G.W. Buchleiter, 1985. ‘User friendly’ software for an integrated water-energy management system for center pivot irrigation Computers and Electronics in Agriculture, 1 (1): 41–57. http://dx.doi.org/10.1016/0168-1699(85)90005-5
[29] Valipour, M. (2012a) ‘HYDRO-MODULE DETERMINATION FOR VANAEI VILLAGE IN ESLAM ABAD GHARB, IRAN’, ARPN J. Agric. Biol. Sci., Vol. 7, No. 12, pp.968-976.
[30] Valipour, M. (2012b) ‘Ability of Box-Jenkins Models to Estimate of Reference Potential Evapotranspiration (A Case Study: Mehrabad Synoptic Station, Tehran, Iran)’, IOSR J. Agric. Veter. Sci. (IOSR-JAVS), Vol. 1, No. 5, pp.1-11.
[31] Valipour, M. (2012c) ‘A Comparison between Horizontal and Vertical Drainage Systems (Include Pipe Drainage, Open Ditch Drainage, and Pumped Wells) in Anisotropic Soils’, IOSR J. Mech. Civil Eng. (IOSR-JMCE), Vol. 4, No. 1, pp.7-12.
[32] Valipour, M. (2012d) ‘Number of Required Observation Data for Rainfall Forecasting According to the Climate Conditions’, Am. J. Sci. Res., Vol. 74, pp.79-86.
[33] Valipour, M. (2012e) ‘Critical Areas of Iran for Agriculture Water Management According to the Annual Rainfall’, Eur. J. Sci. Res., Vol. 84, No. 4, pp.600-608.
[34] Valipour, M. (2014a) ‘Application of new mass transfer formulae for computation of evapotranspiration’, J. Appl. Water Eng. Res., Vol. 2, No. 1, pp.33-46.
[35] Valipour, M. (2014b) ‘Use of average data of 181 synoptic stations for estimation of reference crop evapotranspiration by temperature-based methods’, Water Res. Manage., Vol. 28, No. 12, pp.4237-4255.
[36] Valipour, M. (2017a) ‘Global experience on irrigation management under different scenarios’, J. Water Land Develop., Vol. 32, No. 1, pp.95-102.
[37] Valipour, M. (2017b) ‘Status of land use change and irrigation in Europe by 2035 and 2060’, J. Water Land Develop., In Press.
[38] Valipour, M. (2017c) ‘Drought analysis in different basins and climates’, Taiwan Water Conservancy, Vol. 65, No. 1, pp.55-63.
[39] Valipour, M. (2017d) ‘A study on irrigated area to analyze Asian water development’ J. Water Land Develop., In Press.
[40] Valipour, M. (2017e) ‘Analysis of potential evapotranspiration using limited weather data’, Appl. Water Sci., Vol. 7, No. 1, pp.187-197.
[41] Valipour, M. (2016a) ‘How Much Meteorological Information Is Necessary to Achieve Reliable Accuracy for Rainfall Estimations?’, Agric., Vol. 6, No. 4, pp.53.
[42] Valipour, M. (2016b) ‘VARIATIONS OF LAND USE AND IRRIGATION FOR NEXT DECADES UNDER DIFFERENT SCENARIOS’, Irriga, Vol. 1, No. 1, pp.262-288.
[43] Valipour, M., Gholami Sefidkouhi, M.A. and Raeini-Sarjaz, M. (2017a) ‘Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events’, Agric. Water Manage., Vol. 180, No. Part A, pp.50-60.
[44] Valipour, M., Gholami Sefidkouhi, M.A. and Khoshravesh, M., (2017b) ‘Estimation and trend evaluation of reference evapotranspiration in a humid region’, Ital. J. Agrometeorol., Vol. 1, pp.19-38. In Press.
[45] Valipour, M. and Gholami Sefidkouhi, M.A. (2017) ‘Temporal analysis of reference evapotranspiration to detect variation factors’, Int. J. Glob. Warm., In Press. http://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijgw#63006
[46] Valipour, M. (2015a) ‘Future of agricultural water management in Africa’, Arch. Agron. Soil Sci., Vol. 61, No. 7, pp.907-927.
[47] Valipour, M. (2015b) ‘Land use policy and agricultural water management of the previous half of century in Africa’, Appl. Water Sci., Vol. 5, No. 4, pp.367-395.
[48] Valipour, M. (2015c) ‘Comparative Evaluation of Radiation-Based Methods for Estimation of Potential Evapotranspiration’, J. Hydrol. Eng., Vol. 20, No. 5, pp.04014068.
[49] Valipour, M. (2015d) ‘Importance of solar radiation, temperature, relative humidity, and wind speed for calculation of reference evapotranspiration’, Arch. Agron. Soil Sci., Vol. 61, No. 2, pp.239-255.
[50] Valipour, M. (2015e) ‘Study of different climatic conditions to assess the role of solar radiation in reference crop evapotranspiration equations’, Arch. Agron. Soil Sci., Vol. 61, No. 5, pp.679-694.
[51] Valipour, M. (2015f) ‘Evaluation of radiation methods to study potential evapotranspiration of 31 provinces’, Meteorol. Atmos. Physic., Vol. 127, No. 3, pp.289-303.
[52] Valipour, M. (2015g) ‘Temperature analysis of reference evapotranspiration models’, Meteorol. Appl., Vol. 22, No. 3, pp.385-394.
[53] Valipour, M. (2015h) ‘Investigation of Valiantzas’ evapotranspiration equation in Iran’, Theoret. Appl. Climatol., Vol. 121, No. (1-2), pp.267-278.
[54] Valipour, M. (2015i) ‘Long-term runoff study using SARIMA and ARIMA models in the United States’, Meteorol. Appl., Vol. 22, No. (3), pp.592-598.
[55] Valipour, M. and Montazar, A.A. (2012) ‘An Evaluation of SWDC and WinSRFR Models to Optimize of Infiltration Parameters in Furrow Irrigation’, Am. J. Sci. Res., Vol. 69, pp.128-142.
[56] Valipour, M. (2013a) ‘INCREASING IRRIGATION EFFICIENCY BY MANAGEMENT STRATEGIES: CUTBACK AND SURGE IRRIGATION’, ARPN J. Agric. Biol. Sci., Vol. 8, No. 1, pp.35-43.
[57] Valipour, M. (2013b) ‘Necessity of Irrigated and Rainfed Agriculture in the World’, Irrig. Drain. Syst. Eng., S9, e001.
[58] Valipour, M. (2013c) ‘Evolution of Irrigation-Equipped Areas as Share of Cultivated Areas’, Irrig. Drain. Syst. Eng., Vol. 2, No. 1, e114.
[59] Valipour, M. (2013d) ‘USE OF SURFACE WATER SUPPLY INDEX TO ASSESSING OF WATER RESOURCES MANAGEMENT IN COLORADO AND OREGON, US’, Adv. Agric. Sci. Eng. Res., Vol. 3, No. 2, pp.631-640.
[60] Valipour, M., Mousavi, S.M., Valipour, R. and Rezaei, E. (2013) ‘A New Approach for Environmental Crises and its Solutions by Computer Modeling’, The 1st International Conference on Environmental Crises and its Solutions, Kish Island, Iran.
[61] Viero, D.P. and Valipour, M. (2017) ‘Modeling anisotropy in free-surface overland and shallow inundation flows’, Adv. Water Resour., Vol. 104, pp.1-14.
[62] Yannopoulos, S.I., Lyberatos, G., Theodossiou, N., Li, W., Valipour, M., Tamburrino, A., Angelakis, A.N., 2015. Evolution of Water Lifting Devices (Pumps) over the Centuries Worldwide. Water. 7 (9), 5031-5060.