• editor.aipublications@gmail.com
  • Track Your Paper
  • Contact Us
  • ISSN: 2456-8635 (NAAS Rating: 3.43)

International Journal Of Horticulture, Agriculture And Food Science(IJHAF)

Forecasting monthly water resources conditions by using different indices

Mohammad Valipour


International Journal of Horticulture, Agriculture and Food science(IJHAF), Vol-1,Issue-2, July - August 2017, Pages 1-17,

Download | Downloads : 7 | Total View : 1463

Share

Sharp changes in the SWSI are an obstacle for accurate estimation of this parameter. In addition, providing all of the information needed to determine the SWSI is not always possible. The SWE because of effective role in the calculation of the SWSI, it is a viable alternative to forecast instead the SWSI. The obtained results showed that the ARIMA model forecasted the SWE values for January to June successfully. Using these forecasted data and by non-linear regression can be estimated the SWSI values for all points of each basin except in cases that the amounts of SWSI and SWE are very low (drought conditions).

ARIMA, Oregon, Colorado, Atmospheric condition, The US, Water.

[1] Bewley, D., Y. Alila, A. Varhola, 2010. Variability of snow water equivalent and snow energetics across a large catchment subject to Mountain Pine Beetle infestation and rapid salvage logging, J. Hydrol. 388 (3–4), 464–479, doi: http://dx.doi.org/10.1016/j.jhydrol.2010.05.031
[2] Bland, W. L., P. A. Helmke, J. M. Baker, 1997. High-resolution snow-water equivalent measurement by gamma-ray spectroscopy, Agric. For. Meteorol. 83 (1–2), 27–36, doi: http://dx.doi.org/10.1016/S0168-1923(96)02351-9
[3] Bocchiola, D. and R. Rosso, 2007. The distribution of daily snow water equivalent in the central Italian Alps, Adv. Water Res., 30 (1), 135–147, doi: http://dx.doi.org/10.1016/j.advwatres.2006.03.002
[4] Bocchiola, D. and B. Groppelli, 2010. Spatial estimation of snow water equivalent at different dates within the Adamello Park of Italy, Cold Reg. Sci. Technol. 63 (3), 97–109, doi: http://dx.doi.org/10.1016/j.coldregions.2010.06.001
[5] Carroll, S. S., 1995. Modeling measurement errors when estimating snow water equivalent, J. Hydrol., 172 (1–4), 247–260, http://dx.doi.org/10.1016/0022-1694(95)02710-7
[6] Carroll, S. S. and N. Cressie, 1997. Spatial modeling of snow water equivalent using covariances estimated from spatial and geomorphic attributes, J. Hydrol., 190 (1–2), 42–59, doi: http://dx.doi.org/10.1016/S0022-1694(96)03062-4
[7] Carroll, S. S. and T. R. Carroll, 1989. Effect of forest biomass on airborne snow water equivalent estimates obtained by measuring terrestrial gamma radiation, Remote Sens. Environ. 27 (3), 313–319, doi: http://dx.doi.org/10.1016/0034-4257(89)90091-6
[8] Chang, A. T .C., J. L. Foster, D. K. Hall, A. Rango, B. K. Hartline, 1982. Snow water equivalent estimation by microwave radiometry, Cold Reg. Sci. Technol. 5 (3), 259–267, doi: http://dx.doi.org/10.1016/0165-232X(82)90019-2
[9] Che, T., L. Dai, J. Wang, K. Zhao, Q. Liu, 2012. Estimation of snow depth and snow water equivalent distribution using airborne microwave radiometry in the Binggou Watershed, the upper reaches of the Heihe River basin, Int. J. Appl. Earth Obs. 17, 23–32, doi: http://dx.doi.org/10.1016/j.jag.2011.10.014
[10] Cowles, M. K., D. L. Zimmerman, A. Christ, D. L. McGinnis, 2002. Combining snow water equivalent data from multiple sources to estimate spatio-temporal trends and compare measurement systems, J. Agric. Biol. Environ. Stat. 7 (4), 536-557, doi: 10.1198/108571102753
[11] Dai, L., T. Che, J. Wang, P. Zhang, 2012. Snow depth and snow water equivalent estimation from AMSR-E data based on a priori snow characteristics in Xinjiang, China Remote Sen. Environ. 127, 14–29, doi: http://dx.doi.org/10.1016/j.rse.2011.08.029
[12] Derksen, C., 2008. The contribution of AMSR-E 18.7 and 10.7 GHz measurements to improved boreal forest snow water equivalent retrievals, Remote Sens. Environ. 112 (5), 2701–2710, doi: http://dx.doi.org/10.1016/j.rse.2008.01.001
[13] Derksen, C., A. Walker, B. Goodison, 2003. A comparison of 18 winter seasons of in situ and passive microwave-derived snow water equivalent estimates in Western Canada, Remote Sens. Environ. 88 (3), 271–282, doi: http://dx.doi.org/10.1016/j.rse.2003.07.003
[14] Derksen, C., A. Walker, B. Goodison, 2005. Evaluation of passive microwave snow water equivalent retrievals across the boreal forest/tundra transition of western Canada, Remote Sens. Environ. 96 (3–4), 315–327, doi: http://dx.doi.org/10.1016/j.rse.2005.02.014
[15] Derksen, C., A. Walker, P. Toose, 2008. Estimating Snow Water Equivalent in Northern Regions from Satellite Passive Microwave Data, Cold Region Atmospheric and Hydrologic Studies. The Mackenzie GEWEX Experience, Springer Berlin Heidelberg, 195-212, doi: 10.1007/978-3-540-73936-4_12
[16] Derksen, C., P. Toose, A. Rees, L. Wang, M. English, A. Walker, M. Sturm, 2010. Development of a tundra-specific snow water equivalent retrieval algorithm for satellite passive microwave data, Remote Sens. Environ. 114 (8), 1699–1709, doi: http://dx.doi.org/10.1016/j.rse.2010.02.019
[17] Derksen, C. P. Toose, J. Lemmetyinen, J. Pulliainen, A. Langlois, N. Rutter, M.C. Fuller, 2012. Evaluation of passive microwave brightness temperature simulations and snow water equivalent retrievals through a winter season, Remote Sens. Environ. 117 (15), 236–248, doi: http://dx.doi.org/10.1016/j.rse.2011.09.021
[18] Dong, J., J. P. Walker, P. R. Houser, and C. Sun, 2007. Scanning multichannel microwave radiometer snow water equivalent assimilation, J. Geophys. Res., 112, D07108, doi: 10.1029/2006JD007209.
[19] Dong, J., Walkerc, J. P., Houser P. R., 2005. Factors affecting remotely sensed snow water equivalent uncertainty, Remote Sens. Environ. 97, 68–82, doi: 10.1016/j.rse.2005.04.010
[20] Dressler, K. A., G. H. Leavesley, R. C. Bales and S. R. Fassnacht, 2006. Evaluation of gridded snow water equivalent and satellite snow cover products for mountain basins in a hydrologic model, Hydrol. Process. 20, 673–688. doi: 10.1002/hyp.6130
[21] Durand, M. and D. Liu, 2012. The need for prior information in characterizing snow water equivalent from microwave brightness temperatures, Remote Sens. Environ. 126, 248–257, doi: http://dx.doi.org/10.1016/j.rse.2011.10.015
[22] Durand, M., N. P. Molotch, S. A. Margulis, 2008. Merging complementary remote sensing datasets in the context of snow water equivalent reconstruction, Remote Sens. Environ. 112 (3), 1212–1225, doi: http://dx.doi.org/10.1016/j.rse.2007.08.010
[23] Egli, L., T. Jonas, R. Meister, Comparison of different automatic methods for estimating snow water equivalent, Cold Reg. Sci. Technol. 57 (2–3), 107–115, doi: http://dx.doi.org/10.1016/j.coldregions.2009.02.008
[24] Foster, J. L., A. T. C. Chang, D. K. Hall and A. Rang, 1991. Derivation of Snow Water Equivalent in Boreal Forests Using Microwave Radiometry, ARCTIC, 44 (1), 147-152
[25] Foster, J. L., C., Sun, J. P. Walker, R. Kelly, A. Chang, J. Dong, H. Powell, 2005. Quantifying the uncertainty in passive microwave snow water equivalent observations, Remote Sens. Environ. 94, 187–203, doi: 10.1016/j.rse.2004.09.012
[26] Gan, T. Y., O. Kalinga, P. Singh, 2009. Comparison of snow water equivalent retrieved from SSM/I passive microwave data using artificial neural network, projection pursuit and nonlinear regressions, Remote Sens. Environ. 113 (5), 919–927, doi: http://dx.doi.org/10.1016/j.rse.2009.01.004
[27] Gao, Y., H. Xie, N. Lu, T. Yao, T. Liang, 2010. Toward advanced daily cloud-free snow cover and snow water equivalent products from Terra–Aqua MODIS and Aqua AMSR-E measurements, J. Hydrol. 385 (1–4), 23–35, doi: http://dx.doi.org/10.1016/j.jhydrol.2010.01.022
[28] Garen D.C., 1993. Revised Surface-Water Supply Index for Western United States, J. Water Resour. Plann. Manag. 119 (4), 437-454, doi: http://dx.doi.org/10.1061/(ASCE)0733-9496(1993)119:4(437)
[29] Grasty, R. L., 1982. Direct snow-water equivalent measurement by air-borne gamma-ray spectrometry, J. Hydrol. 55 (1–4), 213–235, doi: http://dx.doi.org/10.1016/0022-1694(82)90131-7
[30] Hoekema D.J. and V. Sridhar, 2011. Relating climatic attributes and water resources allocation: A study using surface water supply and soil moisture indices in the Snake River basin, Idaho, Water Resour. Res. 47, W07536, doi: 10.1029/2010WR009697
[31] Huang, H. C. and N. Cressie, 1996. Spatio-temporal prediction of snow water equivalent using the Kalman filter, Comput. Stat. Data Analys. 22 (2), 159–175, doi: http://dx.doi.org/10.1016/0167-9473(95)00047-X
[32] Jonas, T., C. Marty, J. Magnusson, 2009. Estimating the snow water equivalent from snow depth measurements in the Swiss Alps, J. Hydrol. 378 (1–2), 161–167, doi: http://dx.doi.org/10.1016/j.jhydrol.2009.09.021
[33] Kinar N. J. and J. W. Pomeroy, 2007. Determining snow water equivalent by acoustic sounding, Hydrol. Process. 21, 2623–2640, doi: 10.1002/hyp.6793
[34] Kodama, M., 1980. Continuous monitoring of snow water equivalent using cosmic ray neutrons, Cold Reg. Sci. Technol. 3 (4), 295–303, doi: http://dx.doi.org/10.1016/0165-232X(80)90036-1
[35] Kodama, M., K. Nakai, S. Kawasaki, M. Wada, 1979. An application of cosmic-ray neutron measurements to the determination of the snow-water equivalent, J. Hydrol. 41 (1–2), 85–92, doi: http://dx.doi.org/10.1016/0022-1694(79)90107-0
[36] Koenig, L. S., R. R. Forster, 2004. Evaluation of passive microwave snow water equivalent algorithms in the depth hoar-dominated snowpack of the Kuparuk River Watershed, Alaska, USA, Remote Sens. Environ. 93 (4), 511–527, doi: http://dx.doi.org/10.1016/j.rse.2004.08.004
[37] Langlois, A., D. G. Barber, B. J. Hwang, 2007. Development of a winter snow water equivalent algorithm using in situ passive microwave radiometry over snow-covered first-year sea ice, Remote Sens. Environ. 106 (1), 75–88, doi: http://dx.doi.org/10.1016/j.rse.2006.07.018
[38] Langlois, A., R. Scharien, T. Geldsetzer, J. Iacozza, D. G. Barber, J. Yackel, 2008. Estimation of snow water equivalent over first-year sea ice using AMSR-E and surface observations, Remote Sens. Environ. 112 (9), 3656–3667, doi: http://dx.doi.org/10.1016/j.rse.2008.05.004
[39] López-Moreno, J. I. S. R. Fassnacht, J. T. Heath, K. N. Musselman, J. Revuelto, J. Latron, E. Morán-Tejeda, T. Jonas, Small scale spatial variability of snow density and depth over complex alpine terrain: implications for estimating snow water equivalent, Adv. Water Res., doi: http://dx.doi.org/10.1016/j.advwatres.2012.08.010
[40] Marofi, S., H. Tabari, H. Z. Abyaneh, 2011. Predicting Spatial Distribution of Snow Water Equivalent Using Multivariate Non-linear Regression and Computational Intelligence Methods, Water Resour. Res. 25 (5), 1417-1435, doi: 10.1007/s11269-010-9751-4
[41] Mizukami, N., S. Perica, D. Hatch, 2011. Regional approach for mapping climatological snow water equivalent over the mountainous regions of the western United States, J. Hydrol., 400 (1–2) 72–82, doi: http://dx.doi.org/10.1016/j.jhydrol.2011.01.019
[42] Molotch, N. P., M. T. Colee, R. C. Bales and J. Dozier, Estimating the spatial distribution of snow water equivalent in an alpine basin using binary regression tree models: the impact of digital elevation data and independent variable selection, Hydrol. Process. 19, 1459–1479, doi: 10.1002/hyp.5586
[43] Molotch, N. P., S. A. Margulis, S. M. Jepsen, 2010. Response to comment by A.G. Slater, M.P. Clark, and A.P. Barrett on ‘Estimating the distribution of snow water equivalent using remotely sensed snow cover data and a spatially distributed snowmelt model: A multi-resolution, multi-sensor comparison’ [[Adv. Water Resour. 31 (2008) 1503–1514]. Adv Water Resour 2009;32(11):1680–4], Adv. Water Res. 33 (2), 231–239, doi: http://dx.doi.org/10.1016/j.advwatres.2009.11.008
[44] Molotch, N. P., S. A. Margulis, 2011. Estimating the distribution of snow water equivalent using remotely sensed snow cover data and a spatially distributed snowmelt model: A multi-resolution, multi-sensor comparison, Adv. Water Res. 31 (11), 1503–1514, doi: http://dx.doi.org/10.1016/j.advwatres.2008.07.017
[45] Peltoniemi, M., J. Vironmäki, M. Korhonen, 1978. Measurement of snow— water equivalent using airborne gamma-ray spectrometry, Geoexploration, 16 (4), 322, doi: http://dx.doi.org/10.1016/0016-7142(78)90044-3
[46] Pulliainen, J., 2006. Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations, Remote Sens. Environ. 101 (2), 257–269, doi: http://dx.doi.org/10.1016/j.rse.2006.01.002
[47] Pulliainen, J., M. Hallikainen, 2001. Retrieval of Regional Snow Water Equivalent from Space-Borne Passive Microwave Observations, Remote Sens. Environ. 75 (1), 76–85, doi: http://dx.doi.org/10.1016/S0034-4257(00)00157-7
[48] Shafer B.A. and L.E. Dezman, 1982. DEVELOPMENT OF A SURFACE WATER SUPPLY INDEX (SWSI) TO ASSESS THE SEVERITY OF DROUGHT CONDITIONS IN SNOWPACK RUNOFF AREAS, Western Snow Conference, 710-82: 164-175.
[49] Singh, P. R. and T. Y. Gan, 2000. Retrieval of Snow Water Equivalent Using Passive Microwave Brightness Temperature Data, Remote Sens. Environ. 74 (2), 275–286, doi: http://dx.doi.org/10.1016/S0034-4257(00)00121-8
[50] Slater, A. G., M. P. Clark, A. P. Barrett, 2009. Comment on “Estimating the distribution of snow water equivalent using remotely sensed snow cover data and a spatially distributed snowmelt model: A multi-resolution, multi-sensor comparison” by Noah P. Molotch and Steven A. Margulis [Adv. Water Resour. 31 (2008) 1503–1514], Adv. Water Res., 32 (11), 1680–1684, doi: http://dx.doi.org/10.1016/j.advwatres.2009.09.001
[51] Sundström, N., A. Kruglyak, J. Friborg, 2012. Modeling and simulation of GPR wave propagation through wet snowpacks: Testing the sensitivity of a method for snow water equivalent estimation, Cold Reg. Sci. Technol. 74–75, 11–20, doi: http://dx.doi.org/10.1016/j.coldregions.2012.01.006
[52] Tabari, H., S. Marofi, H. Z. Abyaneh, M. R. Sharifi, 2010. Comparison of artificial neural network and combined models in estimating spatial distribution of snow depth and snow water equivalent in Samsami basin of Iran, Neural Comput. Appl. 19 (4), 625-635, doi: 10.1007/s00521-009-0320-9
[53] Tait, A. B., 1998. Estimation of Snow Water Equivalent Using Passive Microwave Radiation Data, Remote Sens. Environ. 64 (3), 286–291, doi: http://dx.doi.org/10.1016/S0034-4257(98)00005-4
[54] Takala, M., K. Luojus, J. Pulliainen, C. Derksen, J. Lemmetyinen, J. P. Kärnä, J. Koskinen, B. Bojkov, 2011. Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements, Remote Sens. Environ. doi: 10.1016/j.rse.2011.08.014
[55] Tani, M., 1996. An approach to annual water balance for small mountainous catchments with wide spatial distributions of rainfall and snow water equivalent, J. Hydrol. 183 (3–4), 205–225, doi: http://dx.doi.org/10.1016/0022-1694(95)02983-4
[56] Timilsena, J. and T. Piechota, 2008. Regionalization and reconstruction of snow water equivalent in the upper Colorado River basin, J. Hydrol. 352 (1–2), 94–106, doi: http://dx.doi.org/10.1016/j.jhydrol.2007.12.024
[57] Tong, J., S. J. Dery, P. L. Jackson and C. Derksen, 2010. Testing snow water equivalent retrieval algorithms for passive microwave remote sensing in an alpine watershed of western Canada, Can. J. Remote Sens. 36 (1), S74–S86
[58] Valipour, M. (2012a) ‘HYDRO-MODULE DETERMINATION FOR VANAEI VILLAGE IN ESLAM ABAD GHARB, IRAN’, ARPN J. Agric. Biol. Sci., Vol. 7, No. 12, pp.968-976.
[59] Valipour, M. (2012b) ‘Ability of Box-Jenkins Models to Estimate of Reference Potential Evapotranspiration (A Case Study: Mehrabad Synoptic Station, Tehran, Iran)’, IOSR J. Agric. Veter. Sci. (IOSR-JAVS), Vol. 1, No. 5, pp.1-11.
[60] Valipour, M. (2012c) ‘A Comparison between Horizontal and Vertical Drainage Systems (Include Pipe Drainage, Open Ditch Drainage, and Pumped Wells) in Anisotropic Soils’, IOSR J. Mech. Civil Eng. (IOSR-JMCE), Vol. 4, No. 1, pp.7-12.
[61] Valipour, M. (2012d) ‘Number of Required Observation Data for Rainfall Forecasting According to the Climate Conditions’, Am. J. Sci. Res., Vol. 74, pp.79-86.
[62] Valipour, M. (2012e) ‘Critical Areas of Iran for Agriculture Water Management According to the Annual Rainfall’, Eur. J. Sci. Res., Vol. 84, No. 4, pp.600-608.
[63] Valipour, M. (2014a) ‘Application of new mass transfer formulae for computation of evapotranspiration’, J. Appl. Water Eng. Res., Vol. 2, No. 1, pp.33-46.
[64] Valipour, M. (2014b) ‘Use of average data of 181 synoptic stations for estimation of reference crop evapotranspiration by temperature-based methods’, Water Res. Manage., Vol. 28, No. 12, pp.4237-4255.
[65] Valipour, M. (2017a) ‘Global experience on irrigation management under different scenarios’, J. Water Land Develop., Vol. 32, No. 1, pp.95-102.
[66] Valipour, M. (2017b) ‘Status of land use change and irrigation in Europe by 2035 and 2060’, J. Water Land Develop., In Press.
[67] Valipour, M. (2017c) ‘Drought analysis in different basins and climates’, Taiwan Water Conservancy, Vol. 65, No. 1, pp.55-63.
[68] Valipour, M. (2017d) ‘A study on irrigated area to analyze Asian water development’ J. Water Land Develop., In Press.
[69] Valipour, M. (2017e) ‘Analysis of potential evapotranspiration using limited weather data’, Appl. Water Sci., Vol. 7, No. 1, pp.187-197.
[70] Valipour, M. (2016a) ‘How Much Meteorological Information Is Necessary to Achieve Reliable Accuracy for Rainfall Estimations?’, Agric., Vol. 6, No. 4, pp.53.
[71] Valipour, M. (2016b) ‘VARIATIONS OF LAND USE AND IRRIGATION FOR NEXT DECADES UNDER DIFFERENT SCENARIOS’, Irriga, Vol. 1, No. 1, pp.262-288.
[72] Valipour, M., Gholami Sefidkouhi, M.A. and Raeini-Sarjaz, M. (2017a) ‘Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events’, Agric. Water Manage., Vol. 180, No. Part A, pp.50-60.
[73] Valipour, M., Gholami Sefidkouhi, M.A. and Khoshravesh, M., (2017b) ‘Estimation and trend evaluation of reference evapotranspiration in a humid region’, Ital. J. Agrometeorol., Vol. 1, pp.19-38. In Press.
[74] Valipour, M. and Gholami Sefidkouhi, M.A. (2017) ‘Temporal analysis of reference evapotranspiration to detect variation factors’, Int. J. Glob. Warm., In Press. http://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijgw#63006
[75] Valipour, M. (2015a) ‘Future of agricultural water management in Africa’, Arch. Agron. Soil Sci., Vol. 61, No. 7, pp.907-927.
[76] Valipour, M. (2015b) ‘Land use policy and agricultural water management of the previous half of century in Africa’, Appl. Water Sci., Vol. 5, No. 4, pp.367-395.
[77] Valipour, M. (2015c) ‘Comparative Evaluation of Radiation-Based Methods for Estimation of Potential Evapotranspiration’, J. Hydrol. Eng., Vol. 20, No. 5, pp.04014068.
[78] Valipour, M. (2015d) ‘Importance of solar radiation, temperature, relative humidity, and wind speed for calculation of reference evapotranspiration’, Arch. Agron. Soil Sci., Vol. 61, No. 2, pp.239-255.
[79] Valipour, M. (2015e) ‘Study of different climatic conditions to assess the role of solar radiation in reference crop evapotranspiration equations’, Arch. Agron. Soil Sci., Vol. 61, No. 5, pp.679-694.
[80] Valipour, M. (2015f) ‘Evaluation of radiation methods to study potential evapotranspiration of 31 provinces’, Meteorol. Atmos. Physic., Vol. 127, No. 3, pp.289-303.
[81] Valipour, M. (2015g) ‘Temperature analysis of reference evapotranspiration models’, Meteorol. Appl., Vol. 22, No. 3, pp.385-394.
[82] Valipour, M. (2015h) ‘Investigation of Valiantzas’ evapotranspiration equation in Iran’, Theoret. Appl. Climatol., Vol. 121, No. (1-2), pp.267-278.
[83] Valipour, M. (2015i) ‘Long-term runoff study using SARIMA and ARIMA models in the United States’, Meteorol. Appl., Vol. 22, No. (3), pp.592-598.
[84] Valipour, M. and Montazar, A.A. (2012) ‘An Evaluation of SWDC and WinSRFR Models to Optimize of Infiltration Parameters in Furrow Irrigation’, Am. J. Sci. Res., Vol. 69, pp.128-142.
[85] Valipour, M. (2013a) ‘INCREASING IRRIGATION EFFICIENCY BY MANAGEMENT STRATEGIES: CUTBACK AND SURGE IRRIGATION’, ARPN J. Agric. Biol. Sci., Vol. 8, No. 1, pp.35-43.
[86] Valipour, M. (2013b) ‘Necessity of Irrigated and Rainfed Agriculture in the World’, Irrig. Drain. Syst. Eng., S9, e001.
[87] Valipour, M. (2013c) ‘Evolution of Irrigation-Equipped Areas as Share of Cultivated Areas’, Irrig. Drain. Syst. Eng., Vol. 2, No. 1, e114.
[88] Valipour, M. (2013d) ‘USE OF SURFACE WATER SUPPLY INDEX TO ASSESSING OF WATER RESOURCES MANAGEMENT IN COLORADO AND OREGON, US’, Adv. Agric. Sci. Eng. Res., Vol. 3, No. 2, pp.631-640.
[89] Valipour, M., Mousavi, S.M., Valipour, R. and Rezaei, E. (2013) ‘A New Approach for Environmental Crises and its Solutions by Computer Modeling’, The 1st International Conference on Environmental Crises and its Solutions, Kish Island, Iran.
[90] Viero, D.P. and Valipour, M. (2017) ‘Modeling anisotropy in free-surface overland and shallow inundation flows’, Adv. Water Resour., Vol. 104, pp.1-14.
[91] Yannopoulos, S.I., Lyberatos, G., Theodossiou, N., Li, W., Valipour, M., Tamburrino, A., Angelakis, A.N., 2015. Evolution of Water Lifting Devices (Pumps) over the Centuries Worldwide. Water. 7 (9), 5031-5060.
[92] Wang, J. R. and M. Tedesco, 2007. Identification of atmospheric influences on the estimation of snow water equivalent from AMSR-E measurements, Remote Sens. Environ. 111 (2–3), 398–408, doi: http://dx.doi.org/10.1016/j.rse.2006.10.024
[93] Warnick, C. C., V. E. Penton, 1971. New methods of measuring water equivalent of snow pack for automatic recording at remote mountain locations, J. Hydrol. 13, 201–215, doi: http://dx.doi.org/10.1016/0022-1694(71)90224-1
[94] Watson, F. G. R., T. N. Anderson, W. B. Newman, S. E. Alexander, R. A. Garrott, 2006. Optimal sampling schemes for estimating mean snow water equivalents in stratified heterogeneous landscapes, J. Hydrol. 328 (3–4), 432–452, doi: http://dx.doi.org/10.1016/j.jhydrol.2005.12.032