• editor.aipublications@gmail.com
  • Track Your Paper
  • Contact Us
  • ISSN: 2456-8635 (NAAS Rating: 3.43)

International Journal Of Horticulture, Agriculture And Food Science(IJHAF)

Distribution, Biochemical Properties and Genetic Relatedness of Endophytic Bacteria of Wet land Plants from Petroleum-Contaminated Sites of the Niger Delta, Nigeria

Juliana Okwena Pondei , Chimezie Jason Ogugbue , Gideon Chijioke Okpokwasili


International Journal of Horticulture, Agriculture and Food science(IJHAF), Vol-2,Issue-5, September - October 2018, Pages 155-173, 10.22161/ijhaf.2.5.1

Download | Downloads : 6 | Total View : 1898

Share

Microbe-assisted phytoremediation is a recent application of bioremediation with much prospects. The genetic relatedness of culturable endophytic bacteria of wetland plants growing on a six month-old and twelve month-old petroleum-contaminated sites, and an uncontaminated site in Bayelsa State of the Niger Delta Region, Nigeria were compared. Most of the endophyte species isolated from the roots, stems and leaves were common to all the sites and belong to the phyla Proteobacteria, Bacteroidetes Firmicutes, Actinobacteria, Chloroflexi and Actinomicrobia, with the γ-Proteobacteria dominating. Pseudomonas was the most prevalent species in all three sites, but higher in the petroleum contaminated sites. Biochemical properties (API 20E) of the common isolates; Pseudomonas spp.Chryseobacterium indologenes,Bacillus and Proteusvaried with sites while only Providencia rettgeri peculiar to the petroleum-contaminated sites showed the same properties. 16S rRNA PCR-DNA fragments of forty-five species of the isolates (15 from each site) were characterized using RFLP and MspI restriction enzyme and a genetic distance tree of the restriction patterns drawn. The percentage of similarity in the genetic relatedness of isolates ranged from 11.1 – 100%. The genetic tree analysis of the 45 species of identified bacteria revealed 3 major clusters with 17 DNA fingerprinting patterns. Pseudomonas species of the root and leaves of the six month-old petroleum-contaminated site and uncontaminated site were seen to cluster together irrespective of date of isolation. The endophytes may play a role in the in situ degradation of the petroleum hydrocarbon of the sites.

Endophytic bacteria, Petroleum, Phytoremediation, Wetlands, Wetland plants.

[1] Z. Stępniewska and A. Kuźniar. “Endophytic microorganisms—promising applications in bioremediation of greenhouse gases,” Appl. Microbiol. Biotechnol., 2013, vol. 97, pp 9589 – 9596.
[2] F. Posada and F. E. Vega. “Establishment of the fungal entomopathogen Beauveriabassiana (Ascomycota: Hypocreales) as an endophyte in cocoa seedlings (Theobroma cacao),”Mycologia, 2005, vol.97, pp 1195 – 1200.
[3] R. P. Ryan, , K. Germaine, A. Franks, D. L. Ryan and D. N. Dowling. “Bacterial endophytes: recent developments and applications,” FEMS Microbiol. Lett., 2008, vol. 278 no.1, pp 1 – 9.
[4] M. McGuinness and D. Dowling. “Plant-associated bacterial degradation of toxic organic compounds in soil,”Int. J. Environ Res. Public Health, 2009, vol. 6, pp 2226 – 2247.
[5] W-M. Chen, Y-Q. Tang, K. M. Mori and X-L. Wu. “Distribution of culturable endophytic bacteria in aquatic plants and their potential for bioremediation in polluted waters,” Aqua. Biol., 2012, vol. 15 pp 99 – 110.
[6] E. Amora-Lazcano, , L. A., Guerrero-Zúñiga, A. Rodriguez-Tovar, A. Rodriguez-Dorantes and M. S. Vasquez-Murrieta. “Rhizospheric plant-microbe interactions that enhance the remediation of contaminated soils,” in Current Research Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. A. Mendez-Vilas ed., 2010, pp 251 – 256.
[7] M. Kukla, T. Płociniczak and Z. Piotrowska-Seget. “Diversity of endophytic bacteria in Loliumperenneand their potential to degrade petroleum hydrocarbons and promote plant growth,” Chemosphere, 2014, vol. 117 pp 40 – 46.
[8] E. Perez-Rosales, L. Alcaraz-Meléndez, M. E. Puente, ,R. Vázquez-Juárez, E. Quiroz-Guzmán, T. Zenteno-Savín andE. Morales-Bojórquez,. “Isolation and characterization ofendophytic bacteria associated withroots of jojoba (Simmondsiachinensis(Link) Schneid),” Curr. Sci., 2017, vol. 112 no. 2, pp 396 – 401.
[9] N. Weyens, D. Van Der Lelie, T. Artois, K. Smeets, S. Taghavi, L. Newman, R. Caarleer and J. Vangronsveld, “Bioaugmentation with engineered endophytic bacteria improves contaminant fate in phytoremediation,” Environ. Sci.Technol., 2009, vol. 43, pp 9413 – 9418.
[10] S. L. Doty, “Review: Enhancing phytoremediation through the use of transgenics and endophytes,” New Phytol., 2008, 179 pp 318 – 333.
[11] S. D. Siciliano, N. Fortin, A. Mihoc, G. Ouellette, R. Roy, G. Lyle, M. Whyte, K. Banks, P. Wisse, S. Labelle, D. Schwab, K. Lee and C. W. Greer, “Selection of specific endophytic bacterial genotypes by plants in response to soil contamination,” Appl. Environ. Microbiol.,2001, vol. 67 no.6 pp 2469 – 2475.
[12] T. Barac, S. Taghavi, B. Borremans, A. Provoost, L. Oeyen, J. V. Colpaert, J. Vangronsveld and D. van der Lelie, “Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants,” Nat. Biotechnol., 2004, vol. 22 no. 5 pp 583 – 588.
[13] S. Taghavi, T. Barac, B. Greenberg, B. Borremans, J. Vangronsveld and D. van der Lelie, “Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene,” Appl. Environ. Microbiol., 2005, vol. 71, pp 8500 - 8505.
[14] K. Germaine, X. Liu, G. Cabellos, J. Hogan, D. Ryan and D. N. Dowling 2006, “Bacterial endophyte- enhanced phyto-remediation of the organochlorine herbicide 2,4-dichlorophenoxyacetic acid,” FEMS Microbiol. Ecol., vol. 57 pp 302 – 310.
[15] M. Afzal, S. Yousaf, T. G. Reichenauer and A. Sessitsch, “The inoculation method affect colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil,” Int. J. Phytorem., 2012, vol. 14, no. 1 pp 35 – 47.
[16] M. Afzal, S. Khan, S. Iqbal, M. S. Mirza and Q. M. Khan, “Inoculation method affects colonization and activity of Burkholderia phytofirmansPsJN during phytoremediation of diesel-contaminated soil,” Int. Biodeterior. Biodegradation, 2013, vol. 85 pp 331 – 336.
[17] K. Fatima, A Imran,, I. Amin, Q. M. Khan and M. Afzal, “Plant species affect colonization patterns and metabolic activity of associated endophytes during phytoremediation of crude oil-contaminated soil,” ESPR, 2016, vol.23 no. 7, pp 6188 – 6196.
[18] R. M. Wersal and J. D. Madsen, “Aquatic plants: their uses and risks,” in International Plant Protection Convention, Food and Drug Administration of the United Nations, Rome, Italy, 2012, pp 1 – 13.
[19] M.N.V. Prasad, “Aquatic Plants for Phytotechnology,” in Environmental Bioremediation Technologies, S. N. Singh and R. D. Tripathi Eds. Springer, Berlin, 2007, pp 259 – 274.
[20] N. Shafi, A. K. Pandit, A. N. Kamili and B. Mashtaq, “Phytoremediation potential of free floating macrophytes – a review,” MRJEST, 2015, vol. 3 no. 1, pp 012 – 016.
[21] S. J.Bhore, R. Nithya and C. Y. Loh,“Screening of endophytic bacteria isolated from leaves of SambungNyawa [Gynuraprocumbens (Lour.) Merr.] forcytokinin-like compounds,”Bioinformatics, 2010, vol. 5 no.5 pp 191 – 197.
[22] P. H. Nielsen, C. Kragelund, R. J. Seviour and J. L. Nielsen, “Identity and ecophysiology of filamentous bacteria in activated sludge,” FEMS Microbiol. Rev., 2009, vol. 33 pp 969 – 998.
[23] Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. Eds., “Preparation and analysis of DNA,” in Current Protocols in Molecular Biology. John Wiley & Sons, Inc., New York, 2003.
[24] U. D. Chima and G. Vure,” Implications of crude oil pollution on natural regeneration of plant species in an oil-producing community in the Niger Delta Region of Nigeria,” J. For. Res., 2014, vol.25 no.4 pp 915 – 921.
[25] E. O. Nwaichi, M. Frac, P. A. Nwoha and P. Eragbor, “Enhanced phytoremediation of crude
oil-polluted soil by four plant species; effect of inorganic and organic bioaugmentation,” Int. J. Phytoremediation, 2015, vol. 17 no. 12 pp 1253 – 1261.
[26] A. A. El Falaky, S. A. Aboulroos, A. A. Saoud and M. A. Ali, “Aquatic plants for bioremediation of waste water,” Eighth International Water Technology Conference, IWTC8, Alexandria, Egypt, 2004, pp 361 – 367.
[27] A. Kumari, Y. B. Pakade, P. Chand, M. N. V. Prasad and B. Lal, “Comparative accounts of chromium accummulation in three ferns under hydroponic system,”J. Sci.Ind. Res., 2014, vol. 73 pp 553 – 558.
[28] J. E. Dombrowski, V. G. Hollenbeck and R. C. Martin, “Isolation and identification of bacterial endophytes from grasses along the Oregon Coast,”Am. J. Plant Sci., 2017, vol. 8 pp 574 – 601.
[29] M. Rosenblueth and E. Martinez-Romero, “Bacterial endophytes and their interactions with Hosts,” Mol. Plant Microbe Interact., 2006, vol. 19 pp 827 – 837.
[30] V. Oliveira, N. C. M. Gomes, A. Almeida, A. M. S. Silva, M. M. Q. Simões, K. Smalla andA. Cunha, “Hydrocarbon contamination and plant species determine the phylogenetic and functional diversity of endophytic degrading bacteria,” Molecular Ecology, 2013, pp 1 – 10.
[31] Y-N. Ho, D. C. Mathewa, S-C. Hsiaoa, C-H. Shih, M-F. Chien, H-M. Chiang and C-C. Huang, “Selection and application of endophytic bacterium Achromobacterxylosoxidans strain F3B for improving phytoremediation of phenolic pollutants,” J. of Hazard. Mater., 2012, vol. 219-220 pp 43 – 49.
[32] J. B. van Beilen, E. G. Funhoff, A. van Loon, A. Just, L. Kaysser, M. Bouza, R. Holtackers, M. Röthlisberger, Z. Li and B. Witholt, “Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl. Environ. Microbiol., 2006, vol. 72 pp 59 – 65.
[33] J. Manos and R. Belas, “The Genera Proteus, Providencia, and Morganella,” Prokaryotes, 2006, vol. 6 pp 245 – 269.
[34] M. MsaadGuerfali, W. Djobbi, K. Charaabi, H.Hamden, S. Fadhl, W. Marzouki, F. Dhaouedi and C. Chevrier, “Evaluation of Providencia rettgeripathogenicity against laboratory Mediterranean fruit fly strain(Ceratitiscapitata),” PLoS ONE, 2018, vol. 13 no.5, e0196343.
[35] P. Gkorezis, M. Daghio, A. Franzetti, D. Van Hamme, W. Sillen and J. Vangronsveld, “The Interaction between plants and bacteria in the remediation of petroleum hydrocarbons: an environmental perspective,” Front. Microbiol.,2016, vol. 7 pp 1836.
[36] S. Tardif, É. Yergeau, J. Tremblay, P. Legendre, L. G. Whyte and C. W. Greer, “The willow microbiome is influenced by soil petroleum-hydrocarbon concentration with plant compartment-specific effects, “Front. Microbiol., 2016, vol. 7 pp 1363.
[37] D. Drzewiecka,“Significance and Roles of Proteus spp. Bacteria in Natural Environments,”Microb. Ecol., 2016, vol. 72 pp 741–758.
[38] H. B. Rasmussen,“Restriction Fragment Length Polymorphism analysis of PCR-amplified fragments (PCR-RFLP) and gel electrophoresis - valuable tool for genotyping and Genetic fingerprinting,” in Gel Electrophoresis - Pinciples and Basics, S. Magdeldin Ed., In Tech Croatia, China, 2012, pp 315 – 334 .