• editor.aipublications@gmail.com
  • Track Your Paper
  • Contact Us
  • ISSN: 2456-7817

International Journal Of Engineering, Business And Management(IJEBM)

Bayesian Analysis Influences Autoregressive Models

Evan Abdulmajeed Hasan

Download | Downloads : 15 | Total View : 116

DOI: 10.22161/ijebm.3.3.2

Journal : International Journal Of Engineering, Business And Management(IJEBM)

Share

The models, principles and steps of Bayesian time series analysis and forecasting have been established extensively during the past fifty years. In order to estimate parameters of an autoregressive (AR) model we develop Markov chain Monte Carlo (MCMC) schemes for inference of AR model. It is our interest to propose a new prior distribution placed directly on the AR parameters of the model. Thus, we revisit the stationarity conditions to determine a flexible prior for AR model parameters. A MCMC procedure is proposed to estimate coefficients of AR(p) model. In order to set Bayesian steps, we determined prior distribution with the purpose of applying MCMC. We advocate the use of prior distribution placed directly on parameters. We have proposed a set of sufficient stationarity conditions for autoregressive models of any lag order. In this thesis, a set of new stationarity conditions have been proposed for the AR model. We motivated the new methodology by considering the autoregressive model of AR(2) and AR(3). Additionally, through simulation we studied sufficiency and necessity of the proposed conditions of stationarity. The researcher, additionally draw parameter space of AR(3) model for stationary region of Barndorff-Nielsen and Schou (1973) and our new suggested condition. A new prior distribution has been proposed placed directly on the parameters of the AR(p) model. This is motivated by priors proposed for the AR(1), AR(2),..., AR(6), which take advantage of the range of the AR parameters. We then develop a Metropolis step within Gibbs sampling for estimation. This scheme is illustrated using simulated data, for the AR(2), AR(3) and AR(4) models and extended to models with higher lag order. The thesis compared the new proposed prior distribution with the prior distributions obtained from the correspondence relationship between partial autocorrelations and parameters discussed by Barndorff-Nielsen and Schou (1973).

Bayesian Analysis, Autoregressive Models, Time series, Stationarity.

[1] Aktekin, T., Dutta, D. K., &Sohl, J. E. (2018). Entrepreneurial firms and financial attractiveness for securing debt capital: a Bayesian analysis. Venture Capital, 20(1), 27-50.
[2] Andrade, U., Bengaly, C. A. P., Alcaniz, J. S., & Santos, B. (2018). Isotropy of low redshift type Ia supernovae: A Bayesian analysis. Physical Review D, 97(8), 083518.
[3] Aquino-López, M. A., Blaauw, M., Christen, J. A., & Sanderson, N. K. (2018). Bayesian Analysis of $$^{} $$ Pb Dating. Journal of Agricultural, Biological and Environmental Statistics, 23(3), 317-333.
[4] Benavoli, A., Corani, G., Demšar, J., &Zaffalon, M. (2017). Time for a change: a tutorial for comparing multiple classifiers through Bayesian analysis. The Journal of Machine Learning Research, 18(1), 2653-2688.
[5] Bergstroem, J., Gonzalez-Garcia, M. C., Maltoni, M., &Schwetz, T. (2015). Bayesian global analysis of neutrino oscillation data. Journal of High Energy Physics, 2015(9), 200.
[6] Bierkens, J., Fearnhead, P., & Roberts, G. (2019). The zig-zag process and super-efficient sampling for Bayesian analysis of big data. The Annals of Statistics, 47(3), 1288-1320.
[7] da Costa, S. S., Benetti, M., &Alcaniz, J. (2018). A Bayesian analysis of inflationary primordial spectrum models using Planck data. Journal of Cosmology and Astroparticle Physics, 2018(03), 004.
[8] Dembo, M., Matzke, N. J., Mooers, A. Ø., & Collard, M. (2015). Bayesian analysis of a morphological supermatrix sheds light on controversial fossil hominin relationships. Proceedings of the Royal Society B: Biological Sciences, 282(1812), 20150943.
[9] Etherton, J. L., Osborne, R., Stephenson, K., Grace, M., Jones, C., & De Nadai, A. S. (2018). Bayesian analysis of multimethod ego‐depletion studies favours the null hypothesis. British Journal of Social Psychology, 57(2), 367-385.
[10] Gao, H., & Bradley, J. R. (2019). Bayesian analysis of areal data with unknown adjacencies using the stochastic edge mixed effects model. Spatial Statistics, 100357.
[11] Goligher, E. C., Tomlinson, G., Hajage, D., Wijeysundera, D. N., Fan, E., Jüni, P., ... & Combes, A. (2018). Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome and posterior probability of mortality benefit in a post hoc Bayesian analysis of a randomized clinical trial. Jama, 320(21), 2251-2259.
[12] Harrison, L., Penny, W. D., &Friston, K. (2003). Multivariate autoregressive modeling of fMRI time series. Neuroimage, 19(4), 1477-1491. Valdes-Sosa, P. A., Roebroeck, A., Daunizeau, J., &Friston, K. (2011). Effective connectivity: influence, causality and biophysical modeling. Neuroimage, 58(2), 339-361.
[13] Heavens, A. F., &Sellentin, E. (2018). Objective Bayesian analysis of neutrino masses and hierarchy. Journal of Cosmology and Astroparticle Physics, 2018(04), 047.
[14] Jóhannesson, G., de Austri, R. R., Vincent, A. C., Moskalenko, I. V., Orlando, E., Porter, T. A., ... & Hobson, M. P. (2016). Bayesian analysis of cosmic ray propagation: evidence against homogeneous diffusion. The Astrophysical Journal, 824(1), 16.
[15] Kruschke, J. K., & Liddell, T. M. (2018). Bayesian data analysis for newcomers. Psychonomic bulletin & review, 25(1), 155-177.
[16] Letham, B., Rudin, C., McCormick, T. H., & Madigan, D. (2015). Interpretable classifiers using rules and bayesian analysis: Building a better stroke prediction model. The Annals of Applied Statistics, 9(3), 1350-1371.
[17] Martín-Sánchez, J. C., Lunet, N., González-Marrón, A., Lidón-Moyano, C., Matilla-Santander, N., Clèries, R., ... & Ferro, A. (2018). Projections in breast and lung cancer mortality among women: A Bayesian analysis of 52 countries worldwide. Cancer research, 78(15), 4436-4442.
[18] Moore, B. R., Höhna, S., May, M. R., Rannala, B., &Huelsenbeck, J. P. (2016). Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures. Proceedings of the National Academy of Sciences, 113(34), 9569-9574.
[19] Pavanato, H. J., Mayer, F. P., Wedekin, L. L., Engel, M. H., & Kinas, P. G. (2018). Prediction of humpback whale group densities along the Brazilian coast using spatial autoregressive models. Marine Mammal Science, 34(3), 734-754.
[20] Reefhuis, J., Devine, O., Friedman, J. M., Louik, C., &Honein, M. A. (2015). Specific SSRIs and birth defects: bayesian analysis to interpret new data in the context of previous reports. bmj, 351, h3190.
[21] Sheriff, S. L., Sun, D., He, Z., Vangilder, L. D., & Isabelle, J. L. (2018). Model selection for wild turkey hunter success rates using small‐area estimation methods. Wildlife Society Bulletin, 42(4), 622-631.
[22] Smitherman, T. A., Kuka, A. J., Calhoun, A. H., Walters, A. B. P., Davis‐Martin, R. E., Ambrose, C. E., ... & Houle, T. T. (2018). Cognitive‐behavioral therapy for insomnia to reduce chronic migraine: A sequential Bayesian analysis. Headache: The Journal of Head and Face Pain, 58(7), 1052-1059.
[23] Thapa, S., Lomholt, M. A., Krog, J., Cherstvy, A. G., & Metzler, R. (2018). Bayesian analysis of single-particle tracking data using the nested-sampling algorithm: maximum-likelihood model selection applied to stochastic-diffusivity data. Physical Chemistry Chemical Physics, 20(46), 29018-29037.
[24] Thomas, Z. M., MacEachern, S. N., &Peruggia, M. (2018). Reconciling Curvature and Importance Sampling Based Procedures for Summarizing Case Influence in Bayesian Models. Journal of the American Statistical Association, 113(524), 1669-1683.
[25] Zhai, X., Huang, H., Xu, P., & Sze, N. N. (2018). The influence of zonal configurations on macro-level crash modeling. Transportmetrica A: Transport Science, 1-18.
[26] Zhang, Y., Tian, L., Sleiman, P., Ghosh, S., &Hakonarson, H. (2018). Bayesian analysis of genome-wide inflammatory bowel disease data sets reveals new risk loci. European Journal of Human Genetics, 26(2), 265.